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Single-cell and single-nucleus genomic approaches can provide unbiased 
and multimodal insights. Here, we discuss what constitutes a molecular cell 
atlas and how to leverage single-cell omics data to generate hypotheses and 
gain insights into cell transitions in development and disease of the nervous 
system. We share points of reflection on what to consider during study 
design and implementation as well as limitations and pitfalls.

The nervous system’s diverse cell types challenge our understanding of 
the brain activity that underlies mental experiences, behavior and dis-
eases. Single-cell and single-nucleus genomics is crucial for discovering 
cell diversity and gaining insights into neurodevelopment, disease and 
brain evolution. These techniques must be carefully applied to avoid 
technical and biological artifacts and detect rare cell populations 
while providing enough depth to uncover diverse biological states. 
Along with refs. 1 and 2, we outline strategies for creating genomic 
cell atlases, which are essential for developing new hypotheses and 
tools for delivering genes and chemicals to specific cells.

Generation of a molecular cell atlas
Successful nervous system atlas generation requires a multiscale, mul-
timodal approach to fully capture the complexity of cell types and 
states. Although this is true in other organ systems, the cellular and 
transcriptomic diversity of the nervous system is particularly robust, 
challenging atlasing endeavors. We present a consensus-driven road-
map for creating detailed brain atlases that reflect the developmental, 
functional and evolutionary aspects of brain cells in both healthy and 
diseased conditions, including variations in health status, age, gender 
and ethnicity (Fig. 1).

Initial single-cell transcriptomic atlases, including large consor-
tium efforts such as the Brain Initiative Cell Census Network3 and the 
Human Cell Atlas4, revolutionized our understanding of brain cellular 
diversity5–11. However, questions remain about the completeness and suit-
ability of omic classifications in depicting functional diversity and their 
role in brain function. New omic technologies add features and functional 
axes for grouping cells, posing a challenge for defining cell types. Initial 
studies provide a preliminary framework for mapping cellular function 
and its relevance to brain health. However, transcriptional atlases based 
on dissociated cells alone are insufficient for a comprehensive cell atlas. 
The complexity of the central nervous system (CNS) requires a multi-
modal approach to understand how chemical and electrical signals shape 
brain function. Effective characterization demands spatial resolution1 
and investigation across pathological, developmental and evolutionary 
aspects. Here we address the starting point of this ambitious journey 
with omic atlases, identifying opportunities and consensus concepts 
while addressing areas that require clarification for effective cell typing 
in future brain atlases, enabling new discoveries.

What should a cell type atlas achieve, and when should a study 
use the term ‘cell atlas’? A detailed cell atlas, which is essential for 
understanding CNS health and disease, must have single-cell resolution 
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high predictive value (defining a cell within a population or as a new 
subset)4. Reproducibility must transcend individual variability, and it 
is crucial for genetically diverse human cohorts. Creating a brain atlas 
demands a systematic approach with high-resolution mapping and 
quality control (Table 1) and should include one or more technologies 
that can assess a cell’s transcriptome, proteome, epigenome and mor-
phology, pinpointing these elements to precise anatomical locations. 

to map cell types and states under various conditions. With increas-
ing cell atlas publications, standardizing annotation is crucial. We 
advocate for a consensus ontogeny-based nomenclature12, grounded 
in lineage histories, molecular states and existing literature, which 
will emphasize reproducibility and data integrity, fostering scientific 
progress. A robust atlas must demonstrate reproducibility (stability 
with new data), integrity (accurate representation of all cell types) and 
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Fig. 1 | Schematics for building a multimodal molecular atlas. Single-cell 
and single-nucleus profiling of brain tissue from humans and other mammals 
establishes a foundation for describing cellular diversity. UMAP plots group 
cells or nuclei by transcriptomic similarity (colors) and align them across species 
by conserved gene expression. Spatial distributions are described using in situ 
marker gene measurements. Integrating multiomic and spatial data creates a 
hierarchical, multimodal cell type atlas. Methods include Patch-seq, long-range 
neuronal projection tracing and viral tracing. Single-cell genomic data predict 
cell–cell communication through ligand–receptor pairs. This multimodal 
description aids understanding of circuit function and dysfunction. Additionally, 

cell type-specific epigenomic features can be used to develop tools for targeting 
cell populations for experimental perturbation and potential treatment of 
brain diseases. Astro, astrocyte; oligo, oligodendrocyte; OPC, oligodendrocyte 
progenitor cell; PVM, perivascular macrophage; SMC, smooth muscle cell; VLMC, 
vascular and leptomeningeal cell; peri, pericyte; micro, microglia; NP, near-
projecting; L6CT, layer 6 corticothalamic; L5ET, layer 5 extratelencephalic; IT, 
intratelencephalic; SC, superior colliculus; PG, pontine gray; TH, thalamus; STR, 
striatum; 5NP, layer 5 near-projecting. Images for cross-species taxonomies and 
multimodal cellular features adapted from ref. 153, Springer Nature Limited.
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Techniques such as Patch-seq exemplify the methods needed to bridge 
omics and function–cell phenotypes13.

A cell atlas should encompass cell type diversity and capture 
molecular and functional traits, starting with single-cell transcriptom-
ics. These atlases reveal how cells react to development, aging, disease 
and sex differences, and they aid in experimental design. Cross-species 
genomic atlases reveal conserved cell types and pathways, although 
species-specific findings need extensive comparisons. Artificial intel-
ligence models further enhance cross-modal mapping. While RNA pro-
filing has advanced brain mapping, it is essential to integrate proteins, 
epigenetics and morphology, as RNA alone cannot capture all features 
of cell variability. Techniques like cellular indexing of transcriptomes 
and epitopes by sequencing (CITE-seq) improve the identification of 
cell subsets14. A comprehensive atlas establishes a baseline of healthy 
cell type states for robust disease condition studies, aiding in discover-
ing mechanisms, predictive models and drug targets.

Hypothesis generation from single-cell data
Single-cell and single-nucleus genomics data are more than an inven-
tory of cell types; they generate new hypotheses tested with other 
neuroscience methods, as any novel claims require follow-up experi-
ments2. Single-cell and single-nucleus genomics have revolutionized 
the study of the nervous system by pinpointing specific cells and 
molecular pathways and contributing new research questions, such 
as the roles of glial and immune cells and cell type-specific vulner-
abilities in aging, neurodegeneration and psychiatric diseases15–20. A 
hypothesis-generating approach contrasts with traditional methods but 
facilitates hypothesis-driven research. Historically, studying changes 
that occur in brain tissue was challenging owing to its complexity and 
heterogeneity. However, single-cell and single-nucleus RNA sequenc-
ing (scRNA-seq and snRNA-seq) technologies now allow large-scale 
comparisons of brain cell states, providing the resolution required to 
dissect cell type-specific responses to perturbation21–23. These studies 
show unique molecular signatures for brain cell types, which are useful 
for classification and function cues24. The high-throughput nature of 
scRNA-seq and snRNA-seq enables rapid assessment of genome-wide 
gene expression and regulation in all cell types. Thus, alterations in 
behavior, development or disease can be profiled at single-cell resolu-
tion to build hypotheses about the key genes and/or cell types that rep-
resent each altered state. When combined with cell type state-specific 
perturbations, scRNA-seq and snRNA-seq provide information that 
leads to many novel hypotheses.

Cell transitions in health and disease
A cell transition refers to changes in a cell’s molecular and/or functional 
state25. In the nervous system, cell transitions can occur physiologi-
cally, for instance, during development and memory formation, or in 
response to disease, infection or trauma26–30. Changes in gene expres-
sion patterns indicate shifts in cell state or responses to external stimuli. 
For example, in Alzheimer’s disease, scRNA-seq and snRNA-seq showed 
changes in microglial gene expression, leading to immune system acti-
vation in the brain, which suggests that there might be therapeutic 
potential in manipulating microglial transitions15,31. In Parkinson’s 
disease, snRNA-seq of the substantia nigra revealed gene expression 
changes in mitochondrial function, oxidative stress and inflamma-
tory processes32. In Huntington’s disease, snRNA-seq identified gene 
expression changes in striatal neurons, revealing alterations in cell 
cycle regulation, transcriptional regulation and synaptic function. 
scRNA-seq and snRNA-seq generate hypotheses about cell transitions 
in response to injury or stress33.

Appropriate methodologies for analyzing different types of 
biological variation are discussed in ref. 1. In brief, discrete models 
(for example, cell clustering) applied to nervous system scRNA-seq 
and snRNA-seq datasets revealed a staggering diversity of cell sub-
types, especially neurons. The first step is resolving unique cell 
types with accurate annotation, often using unsupervised clustering 
methods. A major challenge is determining the optimal number of 
cell clusters and their precise annotation. This typically involves a 
search across the parameter space, including factors such as the 
number of cells, genes used for clustering and clustering thresholds. 
These decisions require rigorous assessment and validation to avoid 
issues such as overclustering or misclassification (as elaborated 
in ref. 2). An approach to cell type annotation should be dynamic, 
adapting to experimental parameters and leveraging a priori knowl-
edge to supervise the process. This flexibility accommodates the 
complexity and diversity of cellular states and lineages in differ-
ent studies. Annotations rely on prior observations, necessitating 
careful evidence selection. Automated annotation methods using 
enriched gene sets from prior literature can be misleading. Manual 
inspection and careful gene comparisons often yield the clearest 
results, provided there is no bias1,2. Beyond discrete clusters, cells 
show continuous variations due to developmental history, loca-
tion and stimulus response, which are essential for nervous system 
homeostasis. Glial cells, for instance, flexibly alter their identities, 
forming a gene expression continuum29,34–37. This necessitates ana-
lytical methods that account for continuous cellular changes beyond 
discrete cell types.

The large scRNA-seq and snRNA-seq atlases of the mouse, mar-
moset and human brain across developmental time points1,2,24,38,39 are 
invaluable for studying how cell fates change across developmental 
and disease states and during evolution. For example, scRNA-seq and 
snRNA-seq approaches have enhanced understanding of cortical areali-
zation by revealing area-specific transcriptional signatures throughout 
development and differentiation trajectories40–42. The data from these 
atlases further suggest that many CNS cell types exist along a transcrip-
tional continuum: distinct cell clusters can be defined in the adult and 
developing brain, but the boundaries between these cell subsets are 
often unclear and reflect continuous transitions of cell transcriptional 
programs, especially in development and disease.

As cells often do not progress in perfect synchrony, a typical 
scRNA-seq and snRNA-seq dataset may capture intermediate states 
along with stable clusters, which allows trajectory inference or pseu-
dotime analysis in silico43. This information can generate hypotheses 
about cell state progression, cell end fate and gene regulatory mecha-
nisms underlying lineage bifurcations. As available tools may yield 
vastly different paths for the same dataset, choosing the appropriate 
tools should be a primary consideration, as discussed further in this 
Review and refs. 1,2.

Table 1 | Considerations when designing a molecular atlas

Considerations Key questions Examples and resources

Scope of the 
study

What is the focus?
Which samples?

Large atlas efforts4,5,10,11, 
targeted regions7,32,37, cell 
types15,29, disorders15,142, 
cell type evolution3,24

Methods What methods to use? scRNA-seq11, 
snRNA-seq142, single-cell 
epigenomics48,49, 
multiome14,143

Cell sampling Sex/ancestry/age breakdown?
Sample meta-data availability?

Dissociation methods66, 
reporting144

Experimental 
design

Multiplexing?
Integration with other 
methods?

Multiplexing for lowering 
cost145 or complementary 
assays13, spatial methods20

Computational 
analysis

How will the bioinformatician 
be trained?
What are the computational 
resources?
What analysis tools and 
data-sharing mechanisms will 
be used?

Current best practices in 
single-cell analysis146
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Inference of regulatory mechanisms driving cell state 
transitions
Subtle transcriptional changes are driven by signaling changes and 
can reveal nuanced disease mechanisms. A promising future direction 
is dissecting how these tightly controlled transcriptomic differences 
might underlie the emergence of autism spectrum disorder (ASD)44, 
schizophrenia45 and other complex disorders46,47. Unlike bulk transcrip-
tomic profiles, scRNA-seq and snRNA-seq approaches may provide 
more insight into how disruptive gene expression leads to phenotypes, 
especially with the wealth of neurotypical scRNA-seq and snRNA-seq 
transcriptomic reference profiles. Yet transcriptomic atlases alone 
are insufficient to reveal mechanisms that underlie developmental 
and disease contexts. This can be addressed in part by single-nucleus 
epigenomics, which profiles the gene regulatory elements that can 
describe cell states. For example, epigenomic area-specific changes in 
intermediate neuronal progenitors precede transcriptomic changes48, 
and ASD-linked mutations influence the binding of transcription factors 
to key gene regulatory regions49. Multiomic approaches can therefore 
comprehensively build the gene regulatory networks that confer cell 
fates, and such approaches are discussed in ref. 1.

The gene regulatory networks and models generated from 
single-cell multiomic profiles generate hypotheses that can be tested 
using perturbation platforms50,51. Perturbation approaches build on the 
growing CRISPR-based, Perturb-seq52 pipeline to activate or downregu-
late target genes and evaluate the resulting gene expression changes 
in the same cell. These approaches have been conducted in model 
systems, such as induced pluripotent stem cell-derived neuronal cul-
tures and human stem cell-derived cortical organoids. For example, 
a Perturb-seq screen of ASD-related genes in the developing mouse 
brain suggested that perturbation of these genes impacts the function 
of both neuronal and glial cell types, with several ASD-related genes 
impacting a common set of gene networks50,51. Another example is a 
cell type-specific Perturb-seq screen in the brain, which was applied to 
interrogate microglia–astrocyte crosstalk in vivo in a multiple sclerosis 
preclinical mouse model53. Perturb-seq screens can therefore refine 
our understanding of the canonical gene signatures and cell types that 
are affected by complex neurological disorders, showing promise as 
a tool to identify and test mechanisms for therapeutic interventions. 
Such approaches are discussed in ref. 2.

Inference of cellular fate decisions and multipotency
Cell atlases raise many questions about how cells make decisions in 
binary- or multiple-choice situations, such as lineage development, fate 
selection, transition to pathological versus healthy states or phenotype 
switching. Transcriptional changes can be approximated as a trajectory 
from scRNA-seq and snRNA-seq data, with bifurcations representing 
moments when cells choose a path54. The period before the bifurcation 
(tipping point) is when extrinsic and intrinsic factors compete during 
a cell’s decision making54,55. External signals or epigenetic priming 
are examples of biasing factors. For instance, neural crest progeni-
tors exhibit competing co-activating programs before bifurcations. 
Single-cell and single-nucleus data can be used to determine which 
transcripts regulate cell type proportions before bifurcations56. Com-
putational tools can analyze active regulons in pseudotime to identify 
transcription factors that correlate with specific future choices56, but 
such predictions of causality during cellular decision making must be 
experimentally validated57. Regulon analysis can be combined with 
clonal analysis using DNA recombination or virally delivered barcodes 
to link pre-bifurcation states to future cell fates58.

Addressing the biasing and decision-making mechanisms is impor-
tant, because the integrity, homeostasis and functionality of a given 
tissue depend not only on the existence of specific cell types but also on 
the correct proportions of those cell types and their proper position-
ing. Perturbations of balances of biasing factors in disease or experi-
mental setups might cause abnormalities during tissue development, 

self-renewal, regeneration and healing. Thus, single-cell genomics will 
increase understanding of how multipotency works in specific stem 
or progenitor cells according to individual or collective multipotency 
models59.

Microenvironment and non-cell-autonomous 
contributors to gene expression
Given the functional impact of coordinated cellular activities in a 
complex tissue such as the nervous system, it is pertinent to ask what 
coordinated activities between unique cell types could explain a bio-
logical phenomenon. The first step is resolving unique cell types with 
accurate annotation, often using unsupervised clustering methods. 
An important issue is determining the number of cell clusters and 
their specific annotation, which typically involves a search across the 
parameter space and should involve assessments and validations to 
avoid overclustering and misclassifications2. An approach to cell type 
annotation should be dynamic, adapting to experimental parameters 
and leveraging a priori knowledge to supervise the process. This flex-
ibility accommodates the complexity and diversity of cellular states 
and lineages in different studies. Annotations rely on prior observa-
tions, necessitating careful evidence selection. Automated annota-
tion methods using enriched gene sets from prior literature can be 
misleading. Manual inspection and careful gene comparisons often 
yield the clearest results, provided there is no bias1,2.

Physiological processes often involve communities of cells chang-
ing their abundance, connectivity or activity, which can be predicted 
using scRNA-seq and snRNA-seq data by observing coordinated 
changes in cellular abundance27. Additionally, cell–cell connectivity 
at the single-neuron level, both locally and between brain areas, can 
be studied using scRNA-seq and snRNA-seq2. Furthermore, cell–cell 
communication can be predicted using scRNA-seq and snRNA-seq 
data, presuming coupled abundance between known ligand– 
receptor pairs (measured through metrics such as correlation and 
mutual information) is associated with activity levels. However, RNA 
abundance plays only a stoichiometric role in signaling, and the inher-
ent noise in scRNA-seq and snRNA-seq data risks false positives1,2,60, 
so it is imperative to validate notable interactions from the results of 
single-cell and single-nucleus approaches using standard laboratory 
assays to ensure accuracy.

Genomic landscape
Genetic variants are driving variations in gene expression across indi-
viduals yet might be challenging to detect, as these changes are often 
cell type specific. Single-cell and single-nucleus transcriptomic technol-
ogies are sequencing platforms, not just gene-counting tools. An advan-
tage over bulk sequencing is the direct association between variants and 
the cells containing them, adding substantial statistical power to iden-
tify somatic variants, including coding mutations, indels, gene fusions 
and copy number changes61–64. However, scRNA-seq and snRNA-seq face 
dropout issues and allelic exclusion, leading to high false negative rates. 
By contrast, single-cell assay for transposase-accessible chromatin 
with sequencing (scATAC-seq) profiles DNA mutations directly but 
is limited to sequencing of open chromatin regions. Single-cell DNA 
sequencing (scDNA-seq) offers a workaround but is less mainstream. 
Single-cell and single-nucleus analysis also provides a built-in germline 
control, improving variant detection power. It is crucial to accept null 
results in the analyses of scDNA-seq, as adjusting filtration parameters 
can exponentially increase called variants with no association with the 
studied condition.

Challenges of sampling the developing brain and 
spinal cord
In addition to dissecting cellular heterogeneity in snapshots of time 
points of tissue collections, coupling sequencing with the time 
axis allows the reconstruction of dynamic processes, such as cell 
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differentiation or state changes in response to external stimuli. This 
is particularly meaningful in developmental or disease contexts. The 
cellular heterogeneity may be attributed to distinct precursors, which 
can be traced upstream or downstream to build a lineage tree.

De novo discovery of rare precursor populations by scRNA-seq and 
snRNA-seq is possible if performed at sufficient throughput. However, 
throughput, depth and cost form the triple constraint to capturing or 
characterizing putative rare cells1. It may be necessary to go through the 
steps of initial unbiased sequencing, enrichment based on novel mark-
ers and/or deep sequencing of enriched cells to reveal the molecular 
properties of these cells. Modifying sampling to account for rare cell 
types is particularly pertinent given the heterogeneity of cell types 
in the nervous system, which varies substantially from the tens of 
subtypes of principal neurons in the cortex to the fewer subtypes of oli-
godendrocytes or ependymal cells. The label-free method mining rare 
cells by sequencing (MIRACL-seq) allows efficient profiling of rare cell 
types from a complex tissue by overloading droplets with single nuclei 
or cells65. Contaminating cells in the same droplets with the rare cells 
can be computationally removed. This technique is particularly useful 
for certain human samples when surface antibody or genetic labeling is 
not feasible. Other approaches to improve the power of low-abundance 
or captured cells in atlas experiments include sequencing large num-
bers of cells or nuclei (which can be cost prohibitive), pre-enriching for 
cell types of interest or removing cells not of interest (both of which 
require reporter lines or specific antibody labeling). These enriching 
or depleting approaches have been particularly useful in the study of 
microglia66, astrocytes26,67 and endothelial cells68, which are routinely 
undersampled in scRNA-seq and snRNA-seq atlases.

Considerations in study design
Technical and experimental design of scRNA-seq and snRNA-seq experi-
ments requires thoughtful consideration. Here, we cover some general 
points, but the parameters for each experiment should be based on the 
aim of the study (Table 2). Technical considerations include how the 
tissue is processed and the choice of technology. For example, it may 
be reasonable to exclude cells that are not of interest either experimen-
tally via cell selection or computationally. The experimenters and data 
analysts need to be cognizant of how the samples were processed and 
also provide this information in published studies.

A critical aspect of tissue processing is dissociation artifacts, 
which can substantially impact the fidelity of single-cell data, 

potentially distorting the bona fide in vivo transcriptional states of 
cells. Previous studies have highlighted the prevalence and impact 
of dissociation-induced transcriptional changes, underscoring the 
importance of employing best-practice protocols that mitigate these 
effects66,69–71.

Computational tools to ensure statistical robustness and power 
for scRNA-seq and snRNA-seq data’s unique challenges and informing 
other aspects of the study design are discussed in ref. 1. Sequenc-
ing depth, crucial to identify rare cell types, should be considered 
based on the biological question, with multiplexing methods mini-
mizing costs and reducing technical batch effects. Single-cell and 
single-nucleus experimental design requires appropriate biological 
replicates and controls to facilitate exploration of previously inac-
cessible questions. For rare samples (hard-to-acquire species, rare 
diseases, human samples), replicates with similar features and/or 
demographics may be challenging, but leveraging other published 
datasets (bulk RNA-seq, scRNA-seq or snRNA-seq) can account for 
gaps from replicate numbers that do not permit robust statistical 
approaches. Cost considerations often make scRNA-seq and snRNA-seq 
approaches more of a hypothesis-generating tool, followed by valida-
tion using orthogonal methods2. While these limitations are not ideal, 
they are essential considerations when choosing an scRNA-seq and/or 
snRNA-seq experiment, as universal guidelines cannot account for all 
experimental scenarios.

Common pitfalls in study design and data interpretation
While we have covered experimental design, proper data interpre-
tation is equally important, especially for hypothesis-generating 
experiments. A common misinterpretation involves cell types of low 
abundance. Examining enough of such cells depends on sample size, 
which is particularly relevant for rare disease or species samples. Gene 
expression in rare cells needs replication (owing to gene dropout), 
and independent verification of their proportions should be carried 
out. Confirmatory experiments should use methods that keep tissue 
intact, such as multiplexed in situ hybridization or spatial transcrip-
tomics with single-cell or single-nucleus resolution. Another pitfall is 
cell type annotation. While similar published datasets or brain atlases 
are useful for comparison, each dataset should be annotated within 
the experimental design context. Sample selection (for example, CNS 
region, age, disease status, genetic perturbation, species) could alter 
the presence of specific cell types and states. The investigator should 

Table 2 | Examples of what types of questions can be addressed with scRNA-seq and snRNA-seq approaches

Questions that can be addressed using 
single-cell genomics

Data and technique Key experimental 
considerations

Types of answers/results 
that can be obtained

Examples

How does disease status impact the milieu 
of cell states?

sc/snRNA-seq, scATAC-seq Sampling power, cell 
population size, cell 
purification method

Disease-induced cell 
dysregulation

147–149

What regulatory activities can be inferred 
from sequenced cells? What are the 
primary factors controlling cell identity 
and activity?

sc/snRNA-seq, scATAC-seq, Perturb-seq Data resolution (unimodal 
vs. multimodal data)

GRN, regulatory protein 
activity

48,49,57

What developmental switches lead to the 
observed phenotype?

sc/snRNA-seq, scATAC-seq GRN/pseudotime methods, 
data resolution, cell 
purification

Differentiation checkpoint 
molecules

54

What is the cellular context of the 
sequenced tissue? What coordinated cell 
activities could be occurring?

sc/snRNA-seq, scATAC-seq Cell isolation, cell 
annotation references

Cellular profile of tissue, 
cell–cell communication

15,142,147

What is the spectrum of mosaic somatic 
variants in a cell type or disease?

scDNA-seq, sc/snRNA-seq, single-cell 
targeted capture sequencing

Amplification protocol, 
depth of coverage

Somatic variants, cell 
phylogenies

117,150,151

What unique cell types are present in the 
sequenced sample?

sc/snRNA-seq, scATAC-seq, single-cell 
multiomics

Sequencing depth and 
resolution, cell population 
size

Rare cell identification, 
lineage trajectories

21,65,152

GRN, gene regulatory networks.
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assign and correct cell annotations using known biological informa-
tion. Finally, CNS cells are unique in RNA transport and processing, 
yet many experiments use nuclei because of technical constraints. 
Some messenger RNA processing and transport properties may not 
be captured in nuclei. Profiling gene expression at synapses or den-
drites at single-cell resolution can address concerns about missing 
RNA at synapses72,73.

Data integration and batch correction add complexity to inter-
preting scRNA-seq and snRNA-seq atlases. Integrating datasets from 
different sources enhances sample size and statistical power, enriching 
biological insights1,2. Selecting the best method for data integration 
and batch correction requires an understanding of techniques such 
as canonical correlation analysis74, mutual nearest neighbors or latent 
space projections, and optimizing them for the specific dataset75,76, 
as discussed in ref. 1. Benchmarking studies on batch correction and 
other analyses are critical77,78 and should include impartial compu-
tational metrics and thorough biological validation. With ongoing 
enhancements and integration of scRNA-seq and snRNA-seq tools and 
approaches, predicting all potential pitfalls is impossible. However, 
neuroscientists should consider their data’s output with respect to 
new hypotheses: can the experimental results, especially identifica-
tion of novel cell types and proportions, be supported independently? 
Could a novel cell type, state or proportion change be driven by tech-
nical artifacts or incorrect data annotation? We advocate for a com-
mon sense approach to interpreting results that deviate from current 
knowledge about cell types or states in the tissue of interest. Single-cell 
and single-nucleus genomics can provide important insights into the 
nervous system, but it is crucial to consider critical factors related to 
design, implementation and analysis as detailed throughout this piece.

Enhancing the accessibility of scRNA-seq and snRNA-seq atlases 
requires user-friendly platforms. The Allen Brain Cell Atlas and 
CELLxGENE offer web-based interfaces for exploring scRNA-seq 
and snRNA-seq data. The Allen Brain Cell Atlas also visualizes mul-
timodal scRNA-seq and snRNA-seq data, aiding in understanding 
brain complexity. Proper data sharing is crucial (see ref. 1 for more 
on this). However, ultimately, we should aim to enhance coding lit-
eracy among biologists and enable them to easily mine the datasets; 
artificial intelligence-based coding support for code generation and 
explanation for noncomputational biologists should be improved 
and promoted.

Mapping cellular transitions in development and 
disease
Transcriptomic cell states emerge in early development, but can be 
altered under disease conditions. The ability to determine temporal 
relationships represents a critical feature of scRNA-seq and snRNA-seq 
experiments that is necessary to address fundamental questions in 
neuroscience (Fig. 2).

Lineage tracing is an important experimental approach that con-
nects information about cells’ history, state and fate79,80. In its simplest 
form, lineage tracing constructs a lineage tree providing a path to all 
the possible fates. However, without knowledge about the genetic 
program(s) that might steer the heterogeneity and dynamics of cell 
fate, lineage information has little benefit. Lineage tracing combines 
the power of interrogating cell states and lineage histories to allow 
reconstruction of the lineage tree, which is inclusive of clonal rela-
tionships between divergent fates and their critical regulators on the 
developmental time scale.

Trajectory inference using 
scRNA-seq

Cell cycle exit

Somatic mutation

CA1

DGCA3

a  In vivo imaging to reconstruct lineages 

d  Evolving CRISPR barcodes e  Lineage tracing with somatic mutations

b Lineage tracing with static barcodes
and scRNA-seq readout

c

Isolation of genomic DNA

Guide RNAs

Barcode

Genome
editing

Cas9

Lineage
barcode

Fig. 2 | Methods for establishing temporal relationships between cells. 
 a, Time-lapse microscopy has been the cornerstone technique for tracing 
cellular processes in vitro and in vivo. Illustrated is an example of lineage tracing 
performed in vivo in the mouse hippocampus. b, Single-cell and single-nucleus 
transcriptomic datasets reconstruct cellular relationships in gene expression 
space and can be used to predict developmental transitions. c, Molecular 
barcoding using complex libraries of static barcodes can be used to establish 

clonal lineage relationships between cells. d, CRISPR-based editing of the 
genome over time can introduce mutations that serve as evolvable barcodes. 
e, Retrospective lineage tracing using somatic mutations can be used in vivo 
without additional manipulation. CA, cornu ammonis; DG, dentate gyrus.  
Panel a, adapted with permission from ref. 154, AAAS; b, adapted from ref. 83, 
Springer Nature Limited.
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One of the aims of lineage tracing is to find molecular switch(s) that 
could modify cell state or cell division dynamics during development 
or even target diseased cells by modifying their transcriptional and/or 
epigenetic signatures. Below, we describe three approaches to map cell 
transitions and discuss two applications to understand disease states.

Among the three major approaches, computational inference has 
been the most extensively explored owing to its broad applicability to 
any scRNA-seq or snRNA-seq dataset. The main advantage here is the 
minimal data requirements, mainly spliced or unspliced gene counts, 
which, for example, have been used to reconstruct mouse hippocampal 
development from original RNA velocity work81. Prospective lineage 
tracing is the newest methodology gaining traction with recent tools 
such as CellTagging, LARRY, STICR, and so on58,82–84, uncovering novel 
shared lineages of cortical excitatory and inhibitory neurons. Retro-
spective tracing is among the most powerful tools available and allows 
higher resolution than static prospective barcoding. However, there are 
limitations on implementation of retrospective lineage tracing, such 
as requirements of CRISPR system-based tracing (delivery and toxicity 
of double-stranded breaks) or high sequencing depth requirements of 
somatic tracing using single-cell whole-genome sequencing.

Computational inference of cell lineage
Developmental processes involve sequential and progressive changes 
in gene expression driven by gene regulatory programs85,86. Pseudo-
time reconstruction infers temporal relationships from scRNA-seq 
and snRNA-seq transcriptomes86,87. After dimensionality reduction 
of scRNA-seq and snRNA-seq datasets, cells along the trajectory 
show closer gene expression. These methods predict novel lineage 
relationships and identify molecular drivers of cell fate transitions. 
Pseudotemporal ordering predicts cell differentiation and state tra-
jectories. Combined with multi-time point profiling, it highlights 
broad lineage changes over time. Popular methods use minimum 
spanning trees in Monocle 2 or 3, with lower-dimensional embedding 
(t-distributed stochastic neighbor embedding, uniform manifold 
approximation and projection (UMAP), principal-component analy-
sis) to compute nearest neighbors or alternative approaches such as 
Palantir based on diffusion maps to orders cells along a pseudotime 
over a low-dimensional phenotypic manifold88. RNA velocity-based 
models such as velocyto, scVelo, dynamo and CellRank fit splicing 
kinetics on spliced and unspliced RNA, when possible, improving with 
time-resolved metabolic RNA labeling81,89–91. RNA velocity modeling is 
enhanced by single-cell long-read sequencing, which provides more 
complete splicing information81,92. However, newer trajectory inference 
algorithms integrate novel splicing models with multiview pseudotime 
and similarity analyses, marking a considerable advance in the field. The 
integration of pseudotemporal inference with time course sampling 
enables the prediction of dynamic relationships and the identification 
of cell state transitions43. Pseudotemporal inference, paired with time 
course sampling or further advanced methods such as Zman-seq for 
recording transcriptomic dynamics28, predicts dynamic relationships 
and identifies cell state transitions. It can identify novel driver genes 
and gene regulatory network elements, especially with multiomics 
(scRNA-seq, snRNA-seq and scATAC-seq)91,93,94.

Challenges in inference of cell trajectories
It is important to underscore that cell atlases depend heavily on assump-
tions made during computational analyses, such as the validity of dis-
tance in the reduced dimensional space. Incorrect assumptions of cell 
type and/or state similarity based on their reduced projections can lead 
to erroneous conclusions regarding trajectories of cellular change. The 
underlying dimensional reduction greatly influences conclusions, and 
misuse of batch correction techniques such as harmony and Seurat can 
inject substantial bias into the analysis75,95. Future computational meth-
ods may need to take a more holistic view of the sources of variation in 
multidimensional and multimodal space.

When transient states are unstable, such as during rapid differ-
entiation, analyses can falsely suggest cell states, leading to incorrect 
lineage conclusions. False positive results can increase with dimen-
sional reduction techniques, where parameter tweaks force cellular 
embeddings with different distance constraints, making populations 
appear close in lower-dimensional space, which leads to transitions 
being computed between unrelated populations.

Determining the directionality of states or identifying root and 
terminal states is a challenge with pseudotemporal methods. RNA 
velocity-based approaches struggle to distinguish mature cell states, 
especially with short-read sequencing data, leading to arbitrary transi-
tions, and moreover do not fit nuclear data well. Supervised methods 
such as Monocle 2 and 3 and CellRank classify root and terminal states 
before pseudotemporal calculation, providing better control91. These 
unsupervised models often fail to differentiate velocity estimates 
from transcriptional noise. While constraining paths and directional-
ity leads to accurate interpretations, prior knowledge is unfeasible in 
less-understood systems. The best practice is to validate novel trajec-
tories using lineage tracing. Orthogonal validation is crucial for gener-
ating cell state atlases2. Low-abundance cells are often underpowered 
for interpreting terminal states, or transient differentiation states are 
incorrectly attributed as cell states. Minimal orthogonal validation 
through visualization (for example, in situ, high-resolution proteom-
ics, spatial transcriptomics) can overcome shortcomings and should 
be required for all atlas development studies.

Prospective lineage tracing
Trajectory estimation as described above is unable to directly link the 
developmental relationship between individual cells and cannot be 
used to investigate whether the clonal progeny of a progenitor follow 
the same developmental pathway or branch off into multiple different 
pathways. By labeling an individual progenitor at an early time point 
and tracking the cell states of its clonal progeny at a later time point, 
lineage tracing is a viable approach to overcome this limitation.

Clonal labeling to trace developmental lineages can be achieved, for 
example, by using retroviral vectors96–101 or transposase systems83,102,103 
that stably integrate genes encoding histochemical or fluorescent mark-
ers into the genome of a mitotic progenitor. This allows the marker gene 
to be passed on to the clonal progeny during cell division, enabling the 
labeling of clonally related neurons. Lineage tracing using marker genes 
has two major confounding factors: lumping errors (clustered cells that 
are not clonal) and splitting errors (dispersed cells that are clonal but 
are not recognized as such).

As an alternative to marker genes, diverse DNA barcodes can be 
used to trace clonal relationships. Static cellular barcodes97,104–106 and 
evolving cellular barcodes102,107–109 can tag clonal relationships more 
accurately and allow parallel tracking of thousands of lineages. Static 
lineage barcodes refer to unique DNA sequences that are stably inte-
grated into a cell’s genome, facilitating the identification of clonal 
progeny through sequencing. Evolving cellular barcodes enable the 
tracking of cell lineages across multiple generations by inducing muta-
tions in the barcodes over time. This is achieved by using CRISPR–Cas9 
genome editing to create repeated mutations within a DNA barcode 
that accumulate over many cell divisions.

By combining barcoding techniques with transcriptome  
analysis83,84,108,110, it is possible to reveal developmental relationships 
between neuronal types and states. Furthermore, the integration of 
cellular lineage barcodes with trajectory inference methods80,111,112 or 
genetic perturbation113–115 holds great potential to improve predictions 
of fate probabilities and to identify key regulatory genes that drive 
developmental fate decisions.

Despite its potential, the accuracy of lineage tracing through 
scRNA-seq and/or snRNA-seq is still limited by the incomplete recov-
ery of clones, which may result in the underestimation of true clonal 
diversity. This is because current in vivo methods combining barcode 
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lineage tracing with scRNA-seq and/or snRNA-seq suffer from partial 
lineage recovery for several reasons, in particular, cell loss during 
tissue dissociation, sorting and droplet loading. These steps can lead 
to biased sampling of cells, resulting in an underestimation of true 
clonal diversity. Recent developments in lineage-tracing methods 
that recover barcodes in intact tissue hold promise for more complete 
lineage recovery110.

Retrospective inference of cell lineage
Beyond the information embedded in RNA profiles, every individual 
has a lineage map inscribed in somatic mutations that occur with each 
cell division in the nuclear genome116–120. Early cell divisions accumulate 
about two to three single-nucleotide variants per division, with higher 
rates during neurogenesis99,118,121. Microsatellite mutation rates are 
higher but undetermined, while copy number variation and transpo-
son insertion occur occasionally, mapping when any two cells diverge 
from a common ancestor122–124. While most spontaneous somatic muta-
tions are functionally silent, some alter gene function and create risk 
for neuropsychiatric diseases, notably epilepsy125–128 and ASD121,129–132.

Proliferation-related mutations, while abundant, occur through-
out the genome, typically in non-transcribed sequences, and so are 
not usually captured in routine scRNA-seq, snRNA-seq or scATAC-seq, 
because (1) these methods cover only a small fraction of the genome, 
and (2) they cover the genome at low coverage, making it difficult to 
call variations in genome sequence119. The highly dispersed nature of 
somatic single-nucleotide variants throughout the genome presently 
makes it cost prohibitive to measure them at scale, because they show 
only modest regional enrichment. Therefore, a major technical chal-
lenge that prevents the widespread use of somatic mutations as lineage 
markers is the lack of high-throughput, affordable methods to assay 
DNA mutations and markers of cell identity, although multiple methods 
are under development that are likely to improve this situation.

Mitochondrial mutations have also been explored as lineage 
marks in humans133–135. They have the advantage that the mitochondrial 
genome mutates 100–1,000 times faster than the nuclear genome, but 
it is also 100,000 times smaller, so that mutations per cell division in 
the mitochondrial genome are a fraction of the mutations in the nuclear 
genome. On the other hand, the mitochondrial genome is virtually 
all open chromatin and so is captured reliably by ATAC-seq almost 
in its entirety, providing a proof-of-principle system in which some 
marks of lineage and good marks of cell type can be obtained in a single 
experiment133,134. Recent advances in methods for isolating cells and 
sequencing mitochondrial DNA promise to improve this approach133,135.

Cell lineage, defined as the sequence of cell divisions that gener-
ates a structure, is likely to be different from the apparent cell lineage 
inferred by assessing seemingly continuous states of single-cell or 
single-nucleus RNA gene expression. For example, studies of cell line-
age in humans with barcoded viral libraries show both convergence 
(formation of a single cell type from multiple lineage origins) and diver-
gence (formation of distinct cell types from a common progenitor)84.

One major limitation for such somatic mutation-based approaches, 
and an area of technological development, is that lineage and transcrip-
tomic information using scRNA-seq and/or snRNA-seq lacks spatial 
resolution for in vivo systems136. This limitation makes it challenging 
to reconstruct dynamic processes involving cell migration. In addition, 
sequential profiling of the same cells over time is another appeal-
ing possibility that enables direct comparisons of cell states along a 
trajectory1,137 (Box 1).

Tracking cells during disease progression: brain 
tumors
Studies of brain tumors represent a unique example of single-cell 
lineage tracing. scRNA-seq and snRNA-seq studies of pediatric and 
adult brain tumors showed that tumors contain progenitor cell states 
that reflect the ones found during normal development. For example, 

scRNA-seq profiling of histone H3 K27M gliomas and adult glioblastoma 
showed that these tumors are composed of a majority of oligodendro-
cyte progenitor-like cells that retain partial differentiation toward more 
differentiated neurodevelopmental cell types. The latest scRNA-seq 
and snRNA-seq atlases of human brain development, together with 
advanced computational data integration methods, allow precise com-
parison of cell states and cell fate across healthy and malignant tissues. 
This has enabled the discovery of neurodevelopmental programs used 
by neural stem cells of the normally developing brain that are recruited 
by multiple types of tumor, including programs that are found in the 
human but not the mouse developing brain138,139. These findings serve 
as a foundation for re-evaluating the accuracy of experimental models 
used to study disease states.

Unlike cells in normal development that follow distinct stages of 
differentiation, the unpredictability of aberrant cell fate transitions 

Box 1

Tracking the dynamics of cell 
states: CNS myeloid cells as a 
model
Transcriptional cell states emerge early in development and 
transition during differentiation, maturation, aging and disease. 
CNS myeloid cells, including microglia and CNS-associated 
macrophages, exemplify this paradigm, although their ontogeny 
and clonal relationships remain unclear155. Aging partially explains 
differences between white and gray matter microglia37, but 
whether a single microglial cell can adopt all context-dependent 
states is unknown. Disease increases microglial turnover156,157, 
possibly involving circulating myeloid cells with distinct molecular 
signatures. Static measurements, however, fail to address these 
dynamics fully.
For targeted therapy, understanding a cell’s past states during 
bifurcation, before it drives or responds to disease, is crucial. 
Lineage-tracing technologies have demonstrated their potential 
in tracking cancer clones through evolution, adaptation and 
metastasis158–160. In CNS diseases, pseudotime trajectories have 
revealed transcriptional states and key regulatory genes in 
microglia155, but experimental validation of intermediate states is 
lacking.
Current lineage-tracing technologies face technical issues such 
as off-target effects, barcode expression silencing and stable 
clone screening. Random barcode insertions offer high diversity 
and resolution but have higher off-target effects. By contrast, 
site-directed insertions avoid off-target effects but have lower 
resolution owing to limited barcodes80.
Data analysis methods for lineage tracing as applied to scRNA-seq 
and snRNA-seq are not universal, and therefore harmonizing results 
across laboratories could be challenging. Spatial contexts are also 
crucial, and, while spatially resolved lineage-tracing methods exist, 
they are not widely available. Some cell responses, like those of 
microglia, are tightly regulated, and evolving barcodes may not 
capture small microglial populations corresponding to a single 
state.
Combination barcodes, where a static barcode marks clonal 
reconstruction and editable barcodes are used for phylogenetic 
reconstruction159, could be implemented. CellTag-multi, which is 
compatible with multiple single-cell modalities, allows recovery of 
barcodes from single-cell chromatin accessibility assays143.
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within brain tumors is a key challenge. In addition, scarcity of longitu-
dinal brain tumor samples prevents tracking of cell states over time. 
Moreover, the timing of cell fate switching is unknown, both under 
physiologic conditions and under therapeutic pressure (that is, it is 
unclear whether it takes days, minutes or some other time period). 
Most of the experiments proposed above are difficult or not feasible 
in vivo, which is problematic as the tumor microenvironment is likely 
to be a major contributor to cancer cell fate transitions.

Pseudotime analyses, lineage tracing and multiome analyses can 
all be used to assess intrinsic and extrinsic factors that regulate cell 
states and fate transitions in brain tumors during evolution as well as 
during drug or radiation treatment (Box 2). Using multiomic scRNA-seq 
and scATAC-seq data to reconstruct gene regulatory networks, as 
discussed above, could also be applied to identify networks govern-
ing cell fate specifications in cancer cells140, and states that emerge 
as a consequence of specific genetic mutations can be applied. This 
can be done directly on patient tissues or in experimental in vitro 
or in vivo models. Validating predictions from such analyses is by 
no means straightforward and requires more direct ways of probing 
tumor cell lineages. For example, lineage tracing of cancer cells in 
the presence of a perturbation (genetic or pharmacological) or when 
co-cultured with normal cells of the brain tumor microenvironment 
can be done in experimental models using methods described above. 
Alternatively, the plasticity and trajectory of specific cell states can 
be assessed by sorting cancer cells directly from patients’ tumors on 
the basis of the expression of state-specific cell surface markers and 
analyzing their composition and trajectory at different time points by 
subsequent scRNA-seq, snRNA-seq and/or lineage tracing. Tumor cells 
have increased burden of copy number aberrations and other DNA 
mutations, and this feature has been used as a basis to model tumor 
cell evolution141.

There are two important conceptual challenges in understanding 
brain tumor growth. First, most cancer cells are stalled in their cell 
fate specification, which is determined by both intrinsic (underlying 
oncogenic mutations) and microenvironmental (including normal cells 
within the tumor microenvironment, such as neurons, astrocytes and 
microglia) factors. Second, cancer cells retain some degree of develop-
mental plasticity and can differentiate toward more mature cell states. 
This suggests that cell fate mechanisms are not only dysregulated in 
cancer but also fuel cancer growth and resistance, allowing cancer 
cells to switch from treatment-sensitive to treatment-resistant states. 
Therefore, an understanding of the mechanisms that govern cell fate 
transitions is necessary to design therapies that effectively target each 
state and/or target plasticity.

Conclusion and future directions
Here, we summarize the implementation of scRNA-seq and snRNA-seq 
in neuroscience for constructing atlases, generating hypotheses and 
understanding cell fate and lineage progression in normal devel-
opment and disease. As evidenced by our detailed descriptions 
of pitfalls and challenges, there are still many technical hurdles to 
overcome. The specific examples that we choose to discuss do not 
capture the full spectrum of possible applications or challenges but 
are merely intended to illustrate common use cases. Furthermore, 
while we strive to present unified concepts in these domains, there 
is no existing consensus handbook regarding the design, execution 
and/or interpretation of scRNA-seq and snRNA-seq experiments 
for CNS samples. Nonetheless, this lack of constraint presents an 
opportunity for further development, in terms of both tool building 
and application. For example, harnessing cell fate tools and applying 
them to postmitotic cells such as neurons could unveil signatures of 
activity-dependent gene expression. Increasing the scale at which 
electrophysiological and scRNA-seq and snRNA-seq transcriptomic 
signatures are measured (for example, Patch-seq) could also enhance 
our understanding (in some tissues) of how individual brain cells 
respond to activity or network perturbations. Genetic tools for scal-
able recording or perturbation of predicted regulatory network 
hub transcriptional programs in the context of cell lineage analysis 
would enable systematic testing of predictions from cell atlas stud-
ies, and many such technologies are beginning to emerge. Finally, 
expanding the number of species and developmental time points 
included in building atlases will also yield more hypotheses about 
brain development, evolution and disease.
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