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Single-cell or single-nucleus transcriptomics is a powerful tool for 
identifying cell types and cell states. However, hypotheses derived from 
these assays, including gene expression information, require validation, and 
their functional relevance needs to be established. The choice of validation 
depends on numerous factors. Here, we present types of orthogonal and 
functional validation experiment to strengthen preliminary findings 
obtained using single-cell and single-nucleus transcriptomics as well as the 
challenges and limitations of these approaches.
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Single-cell or single-nucleus RNA sequencing (sc/snRNA-seq) is a 
powerful tool for identifying cell types and cell states, detecting gene 
expression and epigenetic changes in disease and dysfunction, inferring 
developmental trajectories and cell-state transitions, predicting gene 
regulatory mechanisms, and comparing evolutionary modifications 
in specific tissues across species. The high-throughput nature of these 
experiments and the ever-growing array of computational tools for ana-
lyzing the data they produce also increases the risk of false discoveries, 
or discoveries that do not manifest with functional phenotypes—which 
confounds interpretation of these data1,2. To confirm preliminary find-
ings from single-cell genomics experiments, validation experiments 
using orthogonal and functional methods are required (Fig. 1 and Table 1).

Here we discuss several general use cases and examples of these 
validation approaches1 (Box 1 and Table 1). In Box 2, we discuss why 
evolutionary comparisons are important for both basic and transla-
tional neuroscientists. We also discuss challenges and limitations of sc/
snRNA-seq for evolutionary comparisons (for example, disentangling 
homology versus convergent evolution), relating in vitro models to 
in vivo biology and accounting for technical and biological variability. 
We present specific examples of sc/snRNA-seq findings that require 

validation experiments, covering a variety of common scenarios and 
methods. Although the selected examples are not exhaustive, they 
illustrate how different validation steps complement and confirm sc/
snRNA-seq results.

Some layer of confirmation is essential, with additional validation 
being subjective and depending on the nuances of each biological system. 
The simplest validation experiments are those which validate expression 
of a small number of genes. Such an approach using in situ hybridization 
(ISH) with probes targeting cell-type-specific genes combined with dif-
ferentially expressed genes (DEGs) of interest can provide confirmation of 
the sc/snRNA-seq findings. Protein-level validation can be examined using 
immunostaining. However, these methods of validation are not suitable 
for validation of large numbers of DEGs, or when several genes are neces-
sary for identification of a cellular state or multiple states (Box 1, third use 
case). To validate such claims, multiplex in situ methods or genome-wide 
spatial sequencing methods may be necessary (see below). With a grow-
ing array of spatial transcriptomics and proteomics methods, careful 
consideration of the pros and cons of each method is warranted.

Finally, many sc/snRNA-seq findings reach beyond description 
of gene expression and infer putative function and gene regulatory 
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Fig. 1 | Considerations for orthogonal and functional validation of sc/snRNA-
seq data. sc/snRNA-seq data, regardless of the tissue originally collected from, 
require multiple validation steps to ensure their biological validity (see also 
refs. 1,2). In addition to ensuring proper powering of cell types of interest, 
additional steps should be applied for best practice, including several phases: 
Phase 1, experimental design (for example, choice of model species) and sample 
preparation (for example, enzymatic versus mechanical digestion—which is 
important for collection of immune cells153 or fresh versus frozen samples); 
Phase 2, Single-cell or single-nucleus sequencing, quality control, and primary 

analysis; Phase 3, integration with other datasets (across disease models, species 
or laboratories); Phase 4, alternative sequencing methods (for example, to access 
chromatin accessibility, or long-read sequencing to detect isoform abundance), 
visualization (using IHC, FISH or spatial transcriptomics), functional validation 
to ensure subtypes or substates of cells are terminal and not transitory and, 
finally, cross-species validation (of particular importance when using animal 
models of disease to ensure relevance to humans). One or all of these methods, 
among others, may be required to validate a number of DEGs identified in initial 
sc/snRNA-seq experiments.
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Table 1 | Overview of common validation methods

Orthogonal validation 
approach

Readout What is being 
validated

Pros Cons

RNAscope ISH Molecular RNA transcripts Single-cell resolution spatial 
validation; relatively inexpensive

Low throughput

MERFISH (Vizgen) Molecular RNA transcripts Single-cell resolution spatial 
validation

Costly; requires specialized equipment 
and reagents

Visium (10x) Molecular RNA transcripts High-throughput and anatomical 
validation

Not single-cell resolution; requires 
specialized reagents

IHC Molecular Protein Easily accessible with no specialized 
reagents required

Need validated antibodies; low 
throughput

Flow cytometry Molecular Protein Quantitative readouts at protein level Validating translation potential, which 
may be discordant from RNA findings; 
requires validated antibodies

CyTOF Molecular Protein Quantification of multiple cellular 
components simultaneously (high 
throughput)

Validating translation potential, which 
may be discordant from RNA findings

CRISPR knockout Functional Gene function Test necessity of candidate genes; 
relatively standardized workflows 
across model systems

Can be low throughput; can be costly to 
test multiple genes

CRISPRi/a Functional Gene function Manipulate expression of endogenous 
genes and monitor phenotypic 
consequences; can be multiplexed or 
performed in pooled screens

Variability in degree of interference or 
activation from gene to gene; susceptible 
to epigenetic or trans-acting regulatory 
environment

Perturb-seq Functional Gene function Massively parallel functional readouts 
of gene perturbation phenotypes 
by single-cell transcriptomics and 
individual cell resolution; can be used 
with traditional Cas9 or CRISPRa/i

Not trivial to design, execute and 
interpret; costly; may require robust 
selective challenge

CROP-seq Functional Gene function Massively parallel functional readouts 
of gene perturbation phenotypes 
by single-cell transcriptomics and 
individual cell resolution; can be used 
with traditional Cas9 or CRISPRa/i

Not trivial to design, execute, and 
interpret; costly; may require robust 
selective challenge

ECCITE-seq Functional Gene function An extension of Perturb-seq/
CROP-seq to multimodal readouts

Challenging to implement for 
intracellular antigens

RABID-seq Functional connections Cell–cell interactions High-throughput approach to validate 
physical cell–cell interactions

Requires specialized reagents and 
bioinformatic pipelines

Circuit tracing Functional connections Cell–cell interactions Can be used to identify short-range 
and long-range neuronal connections

May be difficult to label deep brain 
regions

SPEAC-seq Functional connections Cell–cell interactions Allows screening for 
non-cell-autonomous phenotypes of 
gene perturbations in one cell type 
on another cell type in individual 
droplets

Requires specialized reagents and 
bioinformatic pipelines

Physiological readouts 
(calcium imaging, 
electrophysiology, 
transporter activity)

Functional Physical properties 
of cells

Can match biophysical properties of 
cells to their transcriptional identities; 
powerful tools available

Requires specialized skillsets 
(electrophysiology); may require live 
intact tissue sections, cell-type-specific 
genetic labeling, or robust purification 
strategies to target cell types of interest

Live imaging (migration, 
proliferation)

Functional Physical properties 
of cells

Can be performed in high throughput 
(multiple cells per image); provides 
input on cellular behavior

Requires specialized microscopes 
(two-photon, light-sheet) and live cell 
labeling tools

Dye filling for 
morphological readouts

Morphological Cell morphology Can provide morphological 
information that is far more detailed 
than IHC

Low throughput; requires specialized 
equipment

Viral targeting Morphological Cell morphology High-fidelity morphological 
information, can provide sparse 
labeling for ease of reconstruction

May be difficult to label deep brain 
regions

Fluorescent protein 
expression (driver line)

Morphological Cell morphology Can label all cells of one type or 
subtype across the entire CNS

Depending on driver, labeled cell density 
could be too high to identify individual 
complex cells

CRISPR, clustered regularly interspaced short palindromic repeats; CROP-seq, CRISPR droplet sequencing; ECCITE-seq, expanded CRISPR-compatible cellular indexing of transcriptomes and 
epitopes by sequencing.
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mechanisms, as in the cases of cell–cell communication analysis and 
gene regulatory network inference3. While spatial visualization of gene 
expression or protein abundance is useful for demonstrating colocali-
zation of a ligand and receptor, visualization alone is insufficient to 
demonstrate biological function, bona fide cell–cell communication 
or transcription factor (TF)–enhancer–promoter interactions. Validat-
ing these mechanistic and functional inferences requires perturbation 
experiments (Fig. 2) and further functional studies.

Primary orthogonal validation approaches
Validation of clusters versus validation of individual DEGs
By facilitating simultaneous comparison of transcriptomic profiles 
from a collection of cells, sc/snRNA-seq can define clusters based on 
DEGs4–6. However, algorithms used to process and analyze these data-
sets are designed to detect transcriptional differences and, depending 
on the resolution specified, they will continue to subset cells even if 
the differences are so minute that they constitute noise7. It is essential 
to set several resolutions in clustering followed by iterations of com-
putational post hoc validation before biological validation (see ref. 
2 on sequencing technologies). The inherent features of clustering 
algorithms that provide modularity of the system also reinforce the 
importance of post hoc validation methods to ensure clusters reflect 
biology.

Integration and clustering across studies. Integration is a powerful 
tool for cross-dataset comparison, allowing joint assessment of cells 
in large-scale atlases. While this does remove cross-dataset independ-
ence, it is frequently worth that price to jointly apply cell-type calling 
methods. These tools can be either classical integration methods with 
external dataset(s) of interest (to understand whether the cell type 
in question has an exact correspondence to published cell types), or 
transcriptomic similarity approaches (to understand whether the 
newly identified cell type is similar to a previously described cell type). 
The latter can be accomplished by using AddModuleScore() in Seurat8, 
Celltypist9 or CellHint10. Further computational methods to validate 
clustering numbers include visualization of the most highly enriched 
transcripts per cluster (top 10 or top 100) and projection across all cells 
by cluster to create a feature plot of gene expression11. This method 

allows visualization of transcriptional discernment between cells in 
each group: the best clustering illustrates a diagonal line where each 
transcript has relatively uniform enrichment across all cells in a cluster, 
but it is lowly expressed in all other cells across other clusters. High 
expression of cluster-enriched genes outside the candidate cluster 
indicates overclustering and too high resolution—suggesting clusters 
likely represent the same cells or subtle changes between cell states. 
When sub-clustering a cell type into distinct cell states, differences 
between clusters are expected to be more subtle, reflecting shared 
and distinct expression programs between cell states. An emerging 
alternative approach to identify these subtle continuous differences 
in gene expression that drive cell states is to identify gene programs 
coexpressed in subsets of cells (for example, by topic modeling12). It 
may, therefore, be best to initially set the resolution high to overclus-
ter before modifying the resolution, lowering it until robust cluster 
separation is visualized.

An additional computational method to ensure clustering is not 
an algorithmic artifact is to pulse in a known disparate cell type to see 
whether clusters collapse. For example, many groups subcluster cells 
from larger datasets to allow identification of more subtle cellular 
subtypes or states that are otherwise hidden in larger datasets owing 
to divergent cell types, or missing from smaller datasets owing to 
underpowering of low-abundance populations. While this method is 
standard and acceptable, adding in a different cell type is a stringent 
method to determine whether these subtypes or substates are truly 
different. Unlike cell types, distinguishing between cell states is more 
complex, as cell-state transition might require only subtle differences 
in expression programs and involve a continuous transition between 

Box 1

Questions that can be 
addressed using sc/snRNA-seq

 • scRNA-seq data indicate gene X is expressed by cell type A.
 • scRNA-seq data indicate gene Y is upregulated in cell type B 
during disease or pathology.

 • scRNA-seq data indicate cell type C is composed of three 
substates characterized by expression of gene X, gene Y and 
gene Z, respectively.

 • Compositional analysis indicates cell type or state D increases or 
decreases in abundance in disease or pathology.

 • Trajectory inference or RNA velocity suggests that gene X is 
upregulated or downregulated as cells differentiate or respond 
to insult or pathology.

 • Gene regulatory network inference and peak-gene linkage 
analysis, for example, suggest TF1 (or enhancer E1/repressor R1) 
modulates expression of gene A.

 • Cell–cell communication analysis suggests cell type A 
modulates cell type B through the interactions of ligand L1 and 
receptor R1.

Box 2

The importance of evolutionary 
studies

 • Evolution is a general biological principle. Thus, understanding 
the contribution of evolution to nervous system function 
provides important foundational basic science knowledge. 
In addition, understanding the evolutionary constraints and 
opportunities that have occurred in many organisms informs our 
understanding of the relevance of these changes in humans.

 • Understanding the similarities or differences between cell types 
helps us better translate our findings from one organism to 
another (for example, from other mammals to humans).

 • Convergent evolution informs us about the constraints that 
shape brain evolution in terms of plasticity and functional 
organization of the tissue. In this manner, we can focus on the 
potential cellular and molecular mechanisms that correlate 
with convergent behaviors (for example, direct corticospinal 
connections onto lower motor neurons and fine motor control).

 • The implementation of evolutionary approaches can result in 
adaption of new model systems that may offer some technical 
advantages for studying a general problem (for example, the 
evolution of sleep154).

 • Evolved nervous system function may be directly linked to the 
emergence of many types of nervous system disorder in humans 
that are not observable in other species.

 • It can be valuable to include multiple species (for example, 
nonhuman primates or rodents) rather than simply completing 
pairwise comparisons, as it is important to show that gene 
expression signatures track with the biology being studied and 
do not present irrelevant species-specific signals.
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states. Moreover, the correct or most appropriate resolution of the 
diversity of cell states is less well defined, and different resolutions 
could correctly capture true biological differences in cell states. We 
will further discuss this issue in depth below.

Most importantly, all clustering of sc/snRNA-seq data necessitates 
post hoc validation13. Single-cell or single-nucleus data can be viewed 
as a prediction of biology that allows for guided hypothesis generation 
to gain biological insights14.

Testable hypotheses from single-cell datasets 
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Fig. 2 | Overview of perturbation-based validation approaches. a, sc/
snRNA-seq datasets can generate different types of functional or mechanistic 
hypothesis. Arrows mark hypotheses for causal relationships, which are 
generated from single-cell datasets and can be tested by CRISPR-based validation 

tools. b, Examples of CRISPR-based tools to perturb genome sequence and 
gene expression. c, Experimental strategies for high-throughput CRISPR-
based perturbation experiments to validate and test functional or mechanistic 
hypotheses from sc/snRNA-seq datasets. TSS, transcriptional start state.
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DEGs as markers of individual cell types and clusters. DEGs can be 
extrapolated as rudimentary markers of cell types or an indication of 
changes in expression programs between cell states. However, tran-
scriptomic profiles provide a snapshot of cellular behaviors. Given 
that DEG identification is inherently comparative, additional genes 
playing a pivotal role in driving cell identity may escape such analysis. 
For example, an essential interaction between two genes may be nec-
essary for supporting a cell’s function. In the absence of one of those 
genes, a population of cells is actually losing the combined effect of 
both; while this first gene may appear in a DEG analysis between these 
two clusters, the second gene can go unnoticed14–16.

Herein lies the need for orthogonal validation, as the complex 
interplay of DEGs remains largely hidden within transcriptomic data. 
Orthogonal validation is a crucial intermediate in determining whether 
a DEG derived from a cluster is recapitulated within a cellular context 
relevant to the biological question at hand. Depending on parameters 
used for DEG discovery, as well as the condition of samples before 
sequencing, genes defining a cluster may not translate back to a tis-
sue setting. The statistical method applied relies on an assumption 
of distribution of noise, and inferred DEGs could vary with the choice 
of method. For example, frequently used tests such as a generalized 
linear model assume a negative-binomial or Poisson distribution, while 
a Wilcoxon rank-sum test assumes a non-parametric distribution, and 
should be followed by multiple-hypothesis correction2. The expression 
level of DEGs may also fluctuate during a cell’s normal state; thus, cell 
types or identities cannot be declared in lieu of lineage tracing and 
developmental analysis. It then becomes important to demonstrate 
that any genes of interest are truly and consistently expressed at differ-
ent levels between cell states of interest before moving toward mecha-
nistic interrogation. This orthogonal evidence includes experiments 
that are integral to validation of epigenomic, morphological, spatial 
and biophysical properties or function of cells that are predicted from 
transcriptomic data13.

Prior cell classifications as a scaffold for analysis. Understand-
ably, prior cell-type classification schemes have been biased toward 
molecular assays owing to the unprecedented scale and throughput 
of sc/snRNA-seq17. However, there are a number of issues that can arise 
when such data are interpreted in a vacuum: (1) it is difficult to distin-
guish molecular features that define stable cell types from transient 
cell states; (2) resulting cell-type atlases may vary depending on sample 
size and analytical parameters used for clustering, leading to lack of 
reproducibility with no clear ground truth; and (3) functional relevance 
of molecularly defined cell types is unclear.

Recent multimodal single-cell analyses call into question the 
notion of discrete cell types, suggesting that continuous and cor-
related variation in cellular morphology, biophysical properties and 
molecular features contributes substantially to cellular diversity 
within broad transcriptomic classes18. Validation of transcriptomic 
clusters, that is, confirming they have biological relevance, requires 
orthogonal and functional validation. One major reason for requir-
ing such validation of in silico clusters is that cell atlas studies can 
be underpowered for rare cells or cell states, often causing cluster-
ing artifacts. Some methods have been developed to overcome this 
caveat, such as FIND-seq (focused interrogation of cells by nucleic 
acid detection and sequencing)19—developed to study rare astrocyte 
populations isolated on the basis of expression of a few mRNA markers. 
Additional validation steps, including alternative sequencing efforts, 
multi-dataset integration and meta-analyses and visualization (for 
example, in situ, MERSCOPE), are integral to validate the biological 
truth behind computational analyses.

Validation of transcriptomic clusters rests on the hypothesis that 
bona fide cell types should form discrete entities. In other words, if a 
group of cells segregates as a distinct population using multiple assays, 
this would support its designation as a valid cell type or state. The 

number and type of assays needed to validate a newly identified cell 
type or state remain unclear, but at a minimum it is recommended that 
findings from sc/snRNA-seq be validated using at least one independ-
ent assay (for example, visualization using in situ or spatial transcrip-
tomics, single-nucleus assay for transposase-accessible chromatin 
(ATAC) to highlight chromatin accessibility for DEGs, or functional 
assays). However, it is also advisable to move beyond validation of 
individual transcripts and make every attempt to validate targets at 
the level of proteins, cellular physiology, anatomical distribution, 
developmental lineage, morphology, connectivity and/or function. 
These additional phenotypic validation steps establish the robustness 
of the cell type or state under investigation and provide mechanistic 
understanding of its role in the nervous system.

Methods of validation by visualization
Spatial transcriptomics. Spatial transcriptomics, in conjunction with 
ISH, including single-molecule ISH or RNAscope ISH, immunofluores-
cence (IF) and immunohistochemistry (IHC), represents a powerful 
combination of techniques for comprehensive characterization of gene 
expression and protein localization20–22. While sc/snRNA-seq provides 
information on transcriptomes at the single-cell or nucleus level, ISH 
enables visualization of specific RNA molecules within intact tissues, 
confirming their spatial distribution. IF and IHC allow detection and 
localization of proteins, providing additional information on cell types, 
protein–protein interactions and putative cellular functions. Integra-
tion of these complementary techniques verifies sc/snRNA-seq findings 
and allows researchers to study coexpression of genes and proteins in 
the context of tissue architecture, providing a more comprehensive 
understanding of cellular behavior and molecular interactions within 
complex biological systems.

By leveraging the strengths of spatial transcriptomics, ISH, IF 
and IHC, researchers can unravel intricate spatial dynamics of gene 
expression and protein localization, advancing understanding of tis-
sue development and disease pathogenesis. These methods require 
a priori knowledge of DEGs from sc/snRNA-seq experiments. Whereas 
ISH, IF and IHC have low throughput, allowing the validation of a few 
genes at a time, spatial transcriptomics has a throughput of up to 
thousands of genes. Sequencing-based methods such as Visium and 
Slide-seq23 enable simultaneous capture of gene expression informa-
tion from multiple spatially defined regions within a single sample. 
These genome-wide technologies enable localization of groups of DEGs 
(often called ‘gene modules’) in tissue sections. By combining spatially 
resolved gene expression profiling at 50–100 µm resolution (updated 
to 8 µm resolution with Visium HD and 10 µm with Slide-tags24) with 
high-throughput sequencing, these methods provide comprehensive 
validation and complement sequencing data. In situ-based meth-
ods, such as multiplexed error-robust fluorescence in situ hybrid-
ization (MERFISH)25, STARmap26 and in situ sequencing27, provide 
high-throughput direct identification of RNA transcripts at subcel-
lular resolution of panels of several hundred genes by single-molecule 
fluorescence in situ hybridization (FISH) with sequential imaging and 
signal amplification techniques. See ref. 2 for a more in-depth discus-
sion of these methods.

Genes versus proteins. Use of imaging-based RNA visualization to 
validate sc/snRNA-seq results, and/or to spatially resolve sc/snRNA-seq 
data, provides important context and orthogonal validation. However, 
when inferring potential functional consequences of gene expression 
changes, it is critical to also consider protein-level validation. Although 
transcript and protein levels are generally correlated, there are several 
factors that can drive dichotomy in transcript:protein ratios, including 
regulatory relationships and mechanisms regulating protein localiza-
tion, activation and turnover28–30. The nonlinear relationship between 
gene expression and protein levels is particularly noticeable when 
comparing sc/snRNA-seq data with TRAP-seq or proteomics data, 
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where ribosomes and proteins may be in soma-distant processes—par-
ticularly common in CNS cells.

One area in which protein-level validation provides critical infor-
mation is in the inference of cell–cell communication. The power of 
analysis at the single-cell or nucleus level has led to a rapid expan-
sion of methods to assess putative cell–cell communication through 
ligand–receptor interactions from scRNA-seq and/or spatial tran-
scriptomics data31–33. Results from these tools, however, should be 
considered hypothesis generating and not hypothesis validating. 
Beyond assessing whether ligands and receptors truly interact, a lack 
of confirmation that ligands and receptors are present at the protein 
level and in appropriate spatial context represents a critical gap to 
fill. Expression and/or spatial colocalization can be accomplished by 
relatively straightforward techniques such as IHC or flow cytometry/
cytometry by time of flight (cyTOF), and physical interactions can be 
examined via co-immunoprecipitation or newer techniques such as 
multistage native mass spectrometry (nativeomics)34.

Methods of validation by interrogation
Single-cell or single-nucleus transcriptomic approaches uncover DEG 
signatures between different cell types and states. While powerful, 
these data are descriptive and do not establish causality or provide 
mechanistic insights. However, DEGs can be leveraged to generate 
additional hypotheses to test using perturbation-based approaches 
to interrogate causality and link gene expression to cellular function 
(Fig. 2). We cover specific functional validation approaches in the next 
section. We will first describe additional gene editing approaches to 
validate gene expression data. It remains true, however, that even per-
turbation experiments must be validated at the functional level. For 
instance, if a perturbation experiment removes (putatively) phagocytic 
pathway genes, the true final validation of this is to test the functional-
ity of phagocytosis itself.

Several perturbation methods exist in cultured cells and model 
organisms. RNA interference technology enables knockdown of mRNAs 
by synthetic short interfering RNAs or transgenically expressed short 
hairpin RNAs, although it suffers from off-target effects. CRISPR tech-
nology, which enables gene knockout to achieve a complete loss of 
function, has improved our ability to interrogate gene function in a 
scalable and precise manner35. CRISPR interference (CRISPRi) and 
CRISPR activation (CRISPRa) approaches use a catalytically inactive 
Cas9 protein to recruit transcriptional regulators to genomic sites 
of interest, enabling modulation of expression levels36 and thereby 
providing a strategy to directly model changes in expression levels of 
specific DEGs identified from sc/snRNA-seq. CRISPRi/a also can target 
distal regulatory elements, such as enhancers, to establish their func-
tion in controlling gene expression37,38.

CRISPR-based gene perturbation can target genes of interest in 
individual experiments and in massively parallel screens using pooled 
single guide RNA libraries targeting multiple genes of interest. Pooled 
screens can be conducted for a large range of phenotypes, including 
cell survival or specific cellular functions, and states can be read out 
by fluorescent markers or reporters or additional sc/snRNA-seq (for 
example, Perturb-seq39–42 or CROP-seq41). They can also be used for 
screening of long noncoding RNAs43 and cis-regulatory regions (for 
example, in induced pluripotent stem (iPS) cell-derived neurons44 
and microglia44,45). As reviewed in ref. 2, the development of genome 
editing technologies, exemplified by CRISPRi/a, CRISPR deletion 
and CRISPR indel screens, has facilitated large-scale perturbation 
and assessment of DNA sequences. CRISPR-based screens have been 
successfully deployed to study cell types relevant to neuroscience, 
including human iPS cell-derived neurons46, microglia47, astrocytes48, 
neuron–glial co-culture systems49, brain organoids50, and in mouse 
brains in vivo51–53. To minimize artifacts linked to some in vitro cell 
isolated systems (see below), care should be taken in choice of cell 
culture systems, or in vivo CRISPR assays should be considered54. 

However, in vivo screens are challenging to perform, because not all 
cell types are currently easy to manipulate (for example, microglia), or 
target (for example, substates of reactive cells). In vitro screens using 
iPS cell-derived models and primary isolated cells are an alternative, 
and have been predictive of cell states found in vivo—in particular for 
microglia47 and astrocytes48,55. These in vitro CRISPR validation steps 
can predict functional consequences of changes in gene expression 
(Fig. 2).

Functional validation
Functional validation studies are needed, as the physiological relevance 
of different cell clusters cannot be inferred from their transcriptional 
state, but they can serve as a cell typing guide. For cell types described 
by sc/snRNA-seq, it is important to perform functional validation to (1) 
ensure transcriptionally defined clusters represent a true cell type and/
or subtype or substate, and (2) understand their properties in order to 
place them into the context of the larger circuit or brain region. This is 
particularly important when defining ‘states’ of cells. What ‘functional 
validation’ entails is still under debate. Broadly, it links the molecular 
profile (measured through sequencing data) with a phenotype as a way 
to confirm that genes or gene modules identified in sc/snRNA-seq are 
biologically meaningful. Such inference is not trivial, and transcrip-
tionally distinct clusters should not be assumed to always associate 
with functional differences. Indeed, owing to the heuristic nature of 
clustering tools, some separation of cell clusters in sc/snRNA-seq data 
is almost inevitable and so must be interpreted with appropriate cau-
tion in terms of its biological relevance. It is noteworthy that fleeting 
changes in cell state, such as stage within the cell cycle, may have greater 
transcriptomic impact than cell type or substate56. The degree of func-
tional plasticity in this context should also not be underestimated57. 
These issues notwithstanding, sc/snRNA-seq has revealed relatively 
consistent signatures across adult differentiated tissues, predictably 
correlating with changes in cellular morphology58.

Using cell culture systems for validation
Many protocols exist for purification and culture of CNS cells. Origi-
nally involving enrichment (rather than purification) of rodent cells 
from embryos or neonates and inclusion of serum in media to provide 
trophic support, these cultures have provided understanding of basic 
functions of CNS cells. However, recent advances in these techniques, 
combined with expanded interest in studying disease states of indi-
vidual cell types, requires that these methods be questioned—namely 
as serum is not a normal component of the CNS. While methods for the 
culture of CNS cells in the absence of serum have emerged59–61, these are 
not always used—raising concern about in vitro functional validation 
experiments, in particular those of CNS glia and immune cells62. This 
does not negate the power of cell culture as a validation tool; instead it 
highlights the importance of choosing the appropriate in vitro model 
to use for replication of populations of cells of interest identified from 
sc/snRNA-seq studies. Such methods have been discussed extensively 
for astrocytes and microglia elsewhere62, but similar points exist for 
all CNS cells, and will not be covered here.

Strengths of in vitro functional validation include the ability to 
study a homogeneous and pure population of cells of a single type or 
state, and the ability to validate human sc/snRNA-seq data using human 
cells (Fig. 2). This involves use of (induced or embryonic) pluripotent 
stem cell models63,64, two-dimensional or three-dimensional culture 
systems65–67 including organoids (see below), or using primary tissue 
explants. Astrocyte reactive states can be used as an example, with the 
comparison of untreated pluripotent stem cell-derived astrocytes ver-
sus an induced reactive state following treatment with tumor necrosis 
factor, interleukin-1α and C1q68,69. Clusters of interest can be isolated 
through live cell sorting (for example, fluorescence-activated cell 
sorting or magnetic-activated cell sorting) and, after revalidation of 
transcriptional state, consensus homeostatic functional attributes 
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can be interrogated (for example, glutamate reuptake, synaptogenesis 
capacity, neurotrophic capacity) and separately the gain of entirely 
new functions (for example, neurotoxicity).

Deploying these approaches means generating and/or isolating 
cell cultures with particular transcriptomic signatures that are viable 
for such functional characterization assays, which may present chal-
lenges for different cell types and/or states. Single genes or gene sets 
implicated by statistical prioritization (for example, by significance and 
effect size) or necessity and sufficiency for a particular function (or set 
of functions) can be genetically interrogated using these approaches. 
However, if a functional difference is not detected in vitro, the negative 
predictive value is somewhat limited because there may be specific 
functions that are difficult to reproduce in in vitro conditions.

Additional hypotheses and validation can be seeded by results 
from methods for the study of cell–cell interactions. Emerging tech-
nologies that have recently been applied to astrocytes and other glial 
cells include RABID-seq (rabies barcode interaction detection followed 
by sequencing70), SPEAC-seq (systematic perturbation of encapsulated 
associated cells followed by sequencing), which enables droplet-based 
culture of putative interactive cells42 and LIPSTIC (labeling immune 
partnerships by SorTagging intercellular contacts71) for cell–cell 
interactions (first used to uncover interactions between T cells and 
dendritic cells).

Functional validation at the organismal level
Here, we aim to provide general workflows to test the functional rel-
evance of molecularly identified cell clusters. To perform functional 
validation studies in animal models, it may be necessary to generate 
genetic reporter animals that label a given cell type based on its expres-
sion of a marker/DEG72,73. Genetic reporter mice can also be useful for 
mapping the in vivo properties of cell types in the nervous system 
including their activity patterns and contributions to behavior. This 
strategy has been valuable to catalog properties of CNS neurons74 (with 
the caveat that some features may be species specific (for example, 
human) and thus escape validation in a different species (for example, 
a mouse model)). In many cases, cell types cannot be selectively labeled 
by expression of one marker gene alone, as other cell types may also 
express that gene. In that case, it can be useful to use an intersectional 
strategy whereby cells expressing two genes (or expressing one gene 
but not another) can be selectively targeted75. This strategy has been 
used to study different types of neuromodulatory neurons, includ-
ing dopamine and serotonin neurons, which have been shown by sc/
snRNA-seq to be highly heterogeneous76–79.

Functional validation of neuron types has been performed in 
several large-scale cellular taxonomy papers80. A more general strat-
egy moving forward could be to start with cell types defined by sc/
snRNA-seq, then perform spatial transcriptomics to demonstrate 
anatomical localization, then record from cells to examine intrinsic 
membrane (or synaptic) properties and perform morphological recon-
struction (for example, measure properties of dendrites, spines or 
axons), or perform Patch-seq to pair electrophysiological recordings 
with gene expression data from the same cell81,82. A further step includes 
generating a reporter animal that labels the population of interest, then 
testing in vivo circuit connectivity and behavioral relevance of that 
specific cell population. This strategy can also be applied for functional 
validation of cell types in brain organoids.

Recent work in human iPS cell-derived organoids containing both 
neurons and astrocytes provided functional validation of astrocytes 
from organoids at several developmental stages, performing a variety 
of assays that probe known astrocyte functions83. In brain organoids, 
cell morphology, protein levels, progenitor differentiation potential 
and intrinsic physiological properties can be measured functionally. 
Recently, in vivo imaging of neuronal activity in the mouse brain has 
been combined with spatial transcriptomics84–86 to functionally vali-
date molecularly defined cell types.

Similarly, functional validation of astrocytes in different reactive 
and disease states has been successful at adding biological value to 
transcriptomically defined populations. Starting with transcriptomic 
data as a roadmap for reactive astrocyte substates in vivo, research-
ers can isolate primary rodent or iPS cell-derived human astrocytes, 
recapitulate the original gene expression signature, then continue 
with functional validation to determine whether any loss-of-function 
or gain-of-function changes are present across substates. Several 
pipelines exist for producing high-throughput and controllable cell 
culture platforms for validating astrocyte disease biology55,68,69,87,88.

Cross-species comparisons
sc/snRNA-seq provides a molecular common language definition of cell 
types across any species with a quality genome. While the definition of 
a cell type typically invokes other features (for example, connectivity, 
function, morphology), these features can be difficult or impossible to 
acquire across species17,89. Moreover, cell-autonomous gene expression 
programs are the foundation on which many (but not all) structural 
and functional features of a cell are built90. This foundation of shared 
gene expression programs and functional properties across species 
enables an inference process termed homology mapping. Properties 
such as connectivity and physiology are far easier to study in genetically 
tractable and experimentally accessible animal models (for example, 
Mus musculus or Drosophila), and then can be transferred by anchoring 
to homologous cell types in other species, including human91.

Identifying homologous cell types across species ideally involves 
identifying sets of cells in each species that access similar regulatory 
programs for their differentiation92. Single-cell or single-nucleus 
sequencing combined with lineage tracing or fate mapping is pow-
erful for reconstructing developmental histories of cell types93, and 
hence their relationships across species. We still have a fragmented 
understanding of the lineages of transcriptionally defined cell types 
in any one species94–97. Few comparative studies have matched pro-
genitor classes across species91,98; although, even if such information 
is available, shared developmental history is neither necessary nor 
sufficient to infer cell-type homology. The challenge with matching 
homologous types from adult data alone is distinguishing shared 
evolutionary history from phenotypic convergence94,99, but with large 
enough sets of species this can be alleviated100. Transcription factors 
(TFs) potently specify cell-type identity, suggesting that prioritizing 
TFs in cross-species cell-type mapping may improve homology assign-
ments. A single TF or small set of factors can be sufficient to switch the 
fate and ultimate cellular identity. However, TFs are developmentally 
regulated and may not be conserved between the early stages of speci-
fication and adulthood.

Across species, cell types change abundance, gene expression pro-
files and spatial distribution. Each of these differences carries its own 
challenges for cross-species comparisons. In general, cell-type simi-
larity decreases, and homology mapping becomes less accurate, with 
increasing evolutionary distance91,100–104. Remarkably, sc/snRNA-seq 
can be used to reveal conservation and novelty of brain cell types across 
500 million years of evolution, suggesting that core transcriptional 
programs that define cell types are often deeply conserved99,100,105,106. 
Integrating transcriptional profiles from single cells or nuclei across 
species can be difficult, because approaches may rely on assump-
tions of 1:1 orthologous genes107, and gene duplications, losses and 
sequence-level divergence increase with evolutionary distance. Evolu-
tionary modifications of cell types may result from neutral drift, physi-
cal constraints associated with brain reorganization or new functional 
requirements. Overall patterns of transcriptional divergence have been 
linked to neutral drift among primates, coupled with stabilizing selec-
tion over longer timescales at the cell type or tissue level108.

Understanding the neuroanatomical and/or physical constraints 
that drive evolutionary features such as proportional shifts in cell 
types across species remains challenging. Increases in cell-type 
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abundance across species can be intuitively linked to species-specific 
adaptations, such as the proportional increase in a retinal ganglion cell 
subtype in primates that may relate to neocortically driven adapta-
tions to high visual acuity100. However, sometimes the mechanism 
driving the differential modification of each cell type is difficult to 
resolve. For example, reduced proportions of subcortically projecting 
cortical neurons in larger mammalian brains109 may relate to functional 
requirements to maintain scaling relationships between upper and 
lower motor neurons despite disproportionate cortical expansion, or 
to shifts in the migration of homologous types during development, 
with either mechanism leading to different anatomical distributions. 
Another example is the recently observed relative increase in the 
proportion of oligodendrocyte progenitor cells compared to mature 
oligodendrocytes in the human versus nonhuman primate brain110. 
This difference might support enhanced neuronal or myelin plasticity 
in humans, or some other phenotype that has not yet been linked to 
oligodendrocyte function. Increased sampling through sc/snRNA-seq 
across species and individuals within a species helps to distinguish 
processes of drift and selection, while further analysis of scaling rela-
tionships and functional changes are required to resolve contribution 
of physical constraints and new cellular specializations. Arbitrating 
between such possibilities improves understanding of the targets of 
evolutionary selection. Finally, issues such as overfitting to a single 
species reference dataset, and differences in genome quality across 
species, add technical complexity to cross-species comparisons.

When and how does validation fail?
Validation may fail owing to poorly designed initial sequencing experi-
ments. This can be due to contamination of cell types of interest in bulk 
sequencing efforts, or, more common with the uptick in sc/snRNA-seq 
studies, a failure to properly power the study for the cell type of interest 
(see ref. 2 for a review of study design considerations). Similar arti-
facts arise when insufficient biological replicates are sequenced—often 
owing to high costs of sc/snRNA-seq experiments111–113. Although chal-
lenges exist, emerging technologies such as RNA editing and cell-based 
assays offer promise for improved validation. Careful consideration 
and exploration of validation options are necessary to ensure the reli-
ability and robustness of sc/snRNA-seq findings. A brief overview of 
common validation difficulties from a computation standpoint are 
covered elsewhere1; here we cover other validation considerations.

Conceptual limitations of transcriptomic-based homology 
inference
Homology describes phylogenetic relationships and is not a synonym 
of similarity. Cell types may have similar transcriptomes because they 
descend from a common ancestor, or because they acquired these prop-
erties by convergence after evolving under similar selective pressures 
(Fig. 3). The ideal way to discriminate between these two possibilities 
is to sample many species and reconstruct ancestral states using the 
principle of parsimony (convergent characters tend to lack phyloge-
netic continuity). Because this is not always feasible for detailed sc/
snRNA-seq characterization, here we highlight some observations 
that may help with comparing transcriptomic data across species.

Data from neuronal cell types for which homologies were established 
by independent criteria (morphology, input–output connectivity) offer 
two key insights. First, although transcriptomic divergence of homologous 
neurons is generally a function of phylogenetic distance100,104,109, rates of 
transcriptomic divergence are cell-type specific: in primate cerebral cor-
tex, for example, nonneuronal cells diverged more rapidly than neurons104. 
Second, transcriptomic divergence is not even across gene families. TFs 
known for specifying cell identity have conserved expression in homolo-
gous neuron types, whereas the expression of terminal markers or effector 
genes may switch more rapidly104. This indicates that homologous neurons 
may acquire species-specific functions, such as new electrophysiological 
properties109, without changes to their core genetic identity.

These observations are in line with an evolutionary definition of 
cell type, whereby homologous cells share expression of TFs that estab-
lish and maintain their genetic identity114. Comparing TF expression can 
help disambiguate homology and convergent evolution in cell-type 
comparisons of distantly related vertebrate species99,102,105,115–117. For 
example, distinct classes of cortical GABAergic interneurons in amphib-
ians, reptiles, birds and mammals express the same TFs defining class 
identity; however, expression of certain effector genes, such as the 
calcium-binding protein parvalbumin, which marks a class of mamma-
lian GABAergic interneurons, is not conserved across species99,102,105,115.

Are all genes equally informative?
Whether and how to give different weights to genes for homology 
inference remains an open question both conceptually and algorith-
mically. While TFs seem to carry a higher weight for homology infer-
ence, TF combinatorial codes may themselves drift (for example, 
by paralog switching118). This is particularly relevant for comparing 
distantly related species. It should be noted that many comparative 
studies are carried out in lower-quality assemblies, which may not have 
completed enough annotation for the 3′-biased data of sc/snRNA-seq. 
Standard approaches use one-to-one orthologs, assuming that genes 
carry similar functions, but this assumption cannot be made for para-
logs, as gene duplication may be followed by sub-functionalization 
or neo-functionalization. However, limiting analysis to one-to-one 
orthologs filters out a considerable fraction of the transcriptome when 
the species compared are separated by large phylogenetic distances. 
Computational solutions to solve this problem have been proposed 
recently107,119.

Finally, limiting cross-species comparisons to TFs comes with the 
risk of providing an oversimplified representation of cellular diversity. 
As the field defines subtler distinctions of subtypes within given cell 
classes, TF-level gradients and/or post-translational modifications 
may be identified in eliciting distinct transcriptional programs, mak-
ing cross-species comparisons more complicated. Potential develop-
mental regulation of TF expression makes their use to define identity 
challenging from a temporal perspective, even within a species. For 
example, the comparison of TFs may not be powered to identify cell 
types that have diverged recently (sister cell types114), which, by virtue 
of their recent diversification, share a large fraction of their transcrip-
tomes. It should be noted that such post-translational modification 
considerations are not unique to TFs, and should be considered for 
all proteins.

Are cellular transcriptomes enough to infer neuronal 
homologies?
As described above, homology inference becomes harder with increas-
ing phylogenetic distance, especially when there are large branch 
lengths between clades with no extant species, for example, compar-
ing mammals to reptiles. Natural selection acts on the output of brain 
activity, that is, the ability of the brain to support adaptive behaviors in 
an organism’s environment. The substrate of selection is the frequency 
of allelic variants in the population, yet resulting changes in gene tran-
scription that do not lead to functional changes at the individual cell 
level would not be under selection pressure. This mapping between 
genotype and phenotypes under selection in the brain is nontrivial: 
genes do not control function directly (with a few exceptions); rather, 
they affect behavior by instructing cell-type identity, neuronal wiring, 
activity, spatial allocation and several other complex biological vari-
ables. Transcriptomes alone might be insufficient to infer homology 
when we do not know the traits under selection or how genes are related 
to those traits. Other comparisons that can help with homology infer-
ence are defining the developmental origin and neuronal connectiv-
ity of a given cell, although these criteria have their own caveats. The 
concordance of developmental origin, transcriptomic similarity and 
input–output connectivity is ideal for a solid homology inference.
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Consideration for modeling function using in vitro systems
Inaccessibility of neural tissues in humans and other species can limit 
the types of functional validation that can be performed, making 
in vitro models necessary tools for validating sc/snRNA-seq data 
generated from nonexperimental species120,121. The experimental 
tractability of in vitro models makes them an attractive model for the 
functional characterization of transcriptomics states and changes 
through perturbation experiments (Fig. 2). Organoids121 are experi-
mentally tractable systems to model the cell-type heterogeneity121–127 
and spatial organization128,129 of neural tissues. A striking example of 
functional investigations made possible include the generation of 
human neural organoids with or without a single amino acid change 
found in Neanderthals, enabling study of the neurobiological con-
sequences of genetic variation found in an extinct species130,131. 
Single-cell or single-nucleus dissection of neural organoids can 
provide cell-type resolution of developmental trajectories132,133, 
enable perturbation of dynamic gene regulatory networks134, model 
neurological disease mechanisms135–137 and support neurodevelop-
mental cross-species comparisons126,132,138. The inaccessibility of 
non-postmortem human neural tissues positions organoids and/or 
monoculture systems (often) as the only available option for func-
tional investigations, demanding that the limitations of these models 
be acutely understood.

sc/snRNA-seq comparisons demonstrate the capacity of neu-
ral organoids to model broad in vivo neural cell types across numer-
ous genomic modalities122–124,133,139. However, these single-cell data 

comparisons typically use a singular in vivo dataset as a reference, 
which ignores potential variability within the reference data that 
organoids may not recapitulate. Especially with sparse and noisy sc/
snRNA-seq data, any individual dataset carries error. A neural organoid 
model that recapitulates signal from a single in vivo dataset may in fact 
be a poor general model if the reference signal is of low quality and fails 
to replicate. Therefore, to avoid overfitting, it is useful to incorporate 
cross-validation of in vivo signal among in vivo datasets140. Quantify-
ing DEG statistics across cell types and collating the P values and fold 
changes of genes derived from individual in vivo datasets establishes 
a benchmark of reference signal for interpreting organoid differential 
expression statistics.

For cross-species comparisons, sc/snRNA-seq dissection of 
neural organoids can resolve key developmental differences across 
species, such as molecular mechanisms underlying neural progeni-
tor variation across human and primate organoids126,132. However, 
observations are robust only to the class of variability sampled, and 
assessments should be applied to diverse genetic backgrounds (cell 
lines) or differentiation protocols to identify signals that are not 
specific to an individual cell line or protocol. As examples, different 
organoid protocols aiming to derive similar neural lineages (cortical 
organoids) have reported that biases in differentiation patterns139 
and cell-line-specific effects141,142 can obscure disease phenotypes 
in organoid models. Sampling increased genetic and/or technical 
variability increases the likelihood of replicable signal and may buffer 
against overfitting.
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Technical limitations of transcriptomic-based homology 
inference
While we have attempted to provide conceptual criteria above, there 
are computational challenges to defining cell-type homologies because 
there are no formal or uniformly accepted criteria. Multiple methods 
predict homologous cell types107,143–148, but integrating across species 
can be difficult because identification of homologous cell types often 
relies on heuristics such as shared nearest neighbors and nonlinear 
data transformations, rather than formal models of gene expression 
divergence and cell-type evolution149. As such, inclusion or exclusion 
of cell types within a given dataset can alter which cell types appear 
homologous. For example, a putative primate-specific cell type thought 
to be most similar to other striatal interneurons101 was determined to 
actually be more similar to diencephalic neurons when such cell types 
were further included in the analysis150. This issue is a potential caveat 
for any type of comparison, whether it is between species, regions or 
developmental time periods—and is particularly important for the 
deployment of functional orthogonal validation experiments. Com-
positional concerns are especially pressing in the context of in vitro 
studies, in which different iPS cell lines respond divergently to pattern-
ing factors and generate cultures with variable compositions. It is also 
important to consider that conserved populations can be repurposed 
to different brain structures over development. Recent work highlights 
that classes of inhibitory neurons that migrate to rodent olfactory bulb 
have been redirected to the expanded primate white matter98, and 
a mammalian conserved interneuron type is most numerous in the 
mouse hippocampus but more abundant in the primate neocortex101.

The challenges in using sc/snRNA-seq approaches to study cell 
types across species are multiplicative. Even with reliable in vivo data, 
spatiotemporal context and biological variation must be considered 
when modeling homology. In vitro studies have the same challenges 
amplified: cell-type distributions are untethered to the anatomy that 
is reproducibly generated in vivo, with the added concern that the 
observed cell states approximate those seen in vivo, heavily layered 
with various sources of technical variation. Despite these challenges, 
existing data and tools wielded with perspicacious judgment have ena-
bled the discovery of new cell types and shared features and principles 
of vertebrate brain development and function.

Technical and biological artifacts
As evolutionary findings may be challenging to experimentally vali-
date, it is important to consider experimental factors that could lead to 
erroneous interpretations. Some of these are pertinent to evolutionary 
comparisons, but most are generalizable to other types of comparison 
(and can be mitigated by careful orthogonal validation). Recent stud-
ies have shown that technical artifacts such as doublets and ambient 
RNA contamination can lead to misinterpretations151. This issue is 
exacerbated when datasets are compared without properly adjust-
ing for sequencing artifacts. For example, if datasets for one species 
contained more artifacts (for example, higher doublet rate, greater 
ambient RNA contamination), the result could be misinterpreted as 
a species-specific effect (Fig. 4). Equally, it is crucial to obtain demo-
graphically and spatiotemporally similar brain tissues from all species 
for a proper evolutionary comparison (or samples for within-species 
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misinterpretations due to either biological (for example, brain region selection/
dissection or demographics such as age) and/or technical (for example, doublet 
or ambient RNA) artifacts. It should be noted that these comparisons and errors 

could also occur in comparison of other variables: samples of different ages, at 
different stages of disease, across different CNS regions or following different 
treatment paradigms. As always, analysis should be considered in the context of 
the underlying biology being interrogated.
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comparisons). If regional boundaries are not rigorously considered 
during dissection, it is possible to compare improperly matched brain 
regions, which can lead to misclassification of region-specific cellular 
and molecular features as species- or sample-specific results. Although 
spatial transcriptomics may alleviate this problem for species with small 
brain sizes. In addition to brain regions, developmental time points 
should be matched to prevent misinterpreting age-specific effects as 
species-specific effects (Fig. 4). However, matching developmental 
time points in distantly related species might be impossible, and het-
erochrony should also be considered as a mechanism for evolutionary 
change. Finally, it is important to consider that age matching often 
depends on an estimate based on life history traits, and some cell types 
may be more sensitive to the effects of age than others (for example, 
glia change more than neurons in very old age152). Thus, interpretation 
should consider the age bracket of the samples.

Conclusion
We have highlighted the importance of validating sc/snRNA-seq 
data using in-depth data analysis, functional characterization, 
cross-validation, multi-omics integration and follow-up validation 
experiments. We also emphasize the need for specific practices to 
handle confounds in cross-system analyses, such as sampling broadly 
within each system, measuring variance, assessing similarity without 
merging and reporting robustness with effect sizes (see also refs. 1,2). 
These practices can help avoid overfitting and bias, provide meaning-
ful cross-system assessments, and reveal the molecular mechanisms 
of brain evolution, disease responses and adaptive phenotypes. By 
applying sc/snRNA-seq approaches with careful consideration of 
their inherent challenges and limitations, researchers can advance 
our understanding of cellular heterogeneity and evolution across dif-
ferent biological systems.
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