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SUMMARY
Cellular perturbations underlying Alzheimer’s disease (AD) are primarily studied in human postmortem sam-
ples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies
from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease
and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology.
These changes—which we refer to as the early cortical amyloid response—were prominent in neurons,
wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we
confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroin-
flammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes
and pyramidal neurons upregulated genes associated with b-amyloid production and processing during
this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit
dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.
INTRODUCTION

The first pathological sign of Alzheimer’s disease (AD) in the hu-

man cortex is the gradual accumulation of b-amyloid plaques,

followed by the appearance of gliosis, misfolded tau, and neuro-

degeneration. Of critical importance is understanding the coordi-

nated activities of neurons and glia during the early phases of the

disease that initiate this pathogenic cascade.1,2 Postmortem sin-

gle-cell studies have identified disease-associated cellular

changes in AD, particularly at later histopathological stages.3–8

Inference from postmortem samples can be complicated

by peri-mortem transcriptional responses to agonal state,
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cessation of blood flow, hypoxia, and neuronal atrophy. Prior

cytological9–11 and transcriptional12 analyses demonstrate a

marked decline, particularly in neurons, of cell health within

2–4 h postmortem. Consequently, several fundamental ques-

tions related to the early stages of AD remain unanswered,

including which cell types are perturbed the most, what molecu-

lar mechanisms are dysregulated in neuronal types of different

cortical layers, and how these early perturbations contribute to

the production of misfolded proteins and the progression of pa-

thology in the human brain.

We reasoned that a deep analysis of samples from living indi-

viduals harboring various extents of amyloid deposits could
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enable the measurement of veridical cell states associated with

early-stage pathology. We therefore performed single-nucleus

RNA sequencing (snRNA-seq) on a rare set of surgical biopsies

from patients undergoing ventriculoperitoneal shunt placement

for treatment of suspected normal pressure hydrocephalus

(NPH). In a study of 335 individuals, 44% of biopsies contained

b-amyloid (Ab) plaques,13 and most importantly, longitudinal

follow-up of multiple NPH cohorts demonstrated an association

between the presence of Ab within biopsies and a future clinical

diagnosis of AD.13–15 To ensure that our insights were not

restricted to a single cohort and were specific to AD, we further

developed an accurate integrative analysis framework to incor-

porate published postmortem and mouse model single-cell da-

tasets to construct a compendium of 2.4 million uniformly anno-

tated cell profiles across diseases and species. The resulting

analyses revealed what we collectively term the early cortical

amyloid response (ECAR): a suite of consistent tissue changes

in specific cell types that co-occur with the initial onset of brain

amyloidosis.

RESULTS

A single-nucleus atlas of human brain biopsies to
identify AD pathological perturbations
To capture cellular perturbations in the cortex of living individuals

in response to AD pathology, we collected biopsies—frozen

within 5 min of surgical excision to ensure fidelity of in vivo tran-

scriptional states—from the frontal cortices (Brodmann areas 8

and 9) of 52 patients with NPH (Figure 1A). Histopathological ex-

amination of the biopsies identified 19 with Ab plaques (Ab+),

8 with both Ab plaques and phosphorylated tau pathology

(Ab+Tau+), and 25 that were free of histopathology (Table S1).

From the stereotactic position of the catheter insertion site re-

corded by post-surgical computed tomography (CT) or MRI,

we determined that the anatomical location of sampling did not

correlate with AD histopathological burden (Figure S1A). We

further divided the Ab+ biopsies into three groups by their

level of plaque burden (Figures S1B and S1C). The amount of

Ab plaques and tau tangles correlated inversely with these

patients’ Ab-42 cerebrospinal fluid (CSF) levels (p value < 0.001;

Figure 1B) and positively with CSF levels of phosphorylated tau

(p value < 0.005; Figure 1B), consistent with prior biomarker

studies of AD progression.16,17 Moreover, the CSF levels of

phosphorylated tau in Ab+ individuals were similar to individuals

without histopathology (p value > 0.95; Student’s t test) and

significantly less than an independent cohort of 36 clinically diag-

nosed AD individuals (p value < 0.004; Student’s t test; Fig-

ure 1B). Collectively, these results suggest the severity of biopsy

histopathology is representative of the overall burden on

the brain.

To more directly establish the relevance of the observed

histopathology to the clinical stage of the disease, we

compared the clinical cognitive mini-mental state examination

(MMSE) scores of individuals with Ab+ and Ab+Tau+ biopsies

with the control individuals from our cohort. The subjects

with Ab+ biopsies had significantly lower MMSE cognitive

scores compared with controls (p value: 0.04; Cohen d: 0.70;

Table S1). Moreover, the Ab+Tau+ individuals had an even
stronger cognitive decline relative to the individuals whose bi-

opsies were free of amyloid and tau histopathology (p value:

0.009; Cohen d: 0.97). We further reviewed longitudinal clinical

records of the 52 individuals for a median of 5 years after bi-

opsy collection (STAR Methods). A clinical diagnosis of AD

was made in all 8 Ab+Tau+ individuals prior to, or within 1

year of, the time of biopsy. Moreover, 9 of the 19 Ab+ individ-

uals were also diagnosed with AD in longitudinal follow-

ups, representing an incidence rate of 47% and a 4.5-fold

odds increase over individuals with amyloid-free biopsies

(p value < 0.05). These analyses of clinical data indicate that

the Ab and tau status of these biopsies is a reasonable indica-

tor of the clinical progression of the disease.

To explore the cell-type-specific changes associated with Ab

and tau histopathology in the cortex, we obtained 892,828 high-

quality single-nuclei profiles from this biopsy cohort, with a me-

dian of 17,082 nuclei per individual. By unsupervised clustering18

(STARMethods), we identified the sevenmajor classes of cells in

the cortex: excitatory neurons (ExN; 222,449 nuclei), inhibitory

neurons (InN; 83,702 nuclei), microglia (Micro; 59,624 nuclei), as-

trocytes (Astro; 73,487 nuclei), endothelial cells/pericytes (Endo;

22,407 nuclei), oligodendrocytes (Oligo; 396,292 nuclei), and

oligodendrocyte progenitor cells (OPCs; 34,867 nuclei) (Fig-

ure 1C). To increase our resolution, we repeated our clustering

analysis within each class to identify a total of 82 cell types

with a median size of 3,586 nuclei per type.

An integrative analysis of biopsy and postmortem brain
Several studies have profiled brain cells under normal and dis-

ease conditions using human postmortem or mouse samples.

However, a direct comparison of their results has been

hampered by differences in sample qualities, dataset sizes, anal-

ysis pipelines, and cell-type annotations. We reasoned that the

size and quality of our biopsy dataset would be sufficiently

analytically powered to conduct a comprehensive integrative

analysis of these datasets with highly granular cell-type speci-

ficity. We integrated 27 published single-cell/nucleus studies of

the brain derived from both human tissue and mouse models

(Figure 1C). Human studies included postmortem samples

from individuals with AD, Parkinson’s disease (PD), multiple scle-

rosis (MS), and autism spectrum disorder (ASD) (Table S1).

Mouse datasets included models of AD and ALS, as well

as de-/re-myelination, aging, prenatal, and food deprivation

conditions, among others (Table S1). To accurately combine

these datasets with our biopsy cohort, we developed an opti-

mized single-cell integration framework that efficiently handled

the substantial technical (e.g., sample preparation, sequencing

platforms, and depth) and biological (e.g., human vs. mouse)

variation that exists among these datasets (STAR Methods).

We next implemented a random walk method to transfer cell-

type annotations from our biopsy cohort to each of 27 other

studies, thereby uniformly annotating a total of 2,406,980 cells

with 82 cell-type labels (Figure 1D; Table S2). Comparison

across human datasets demonstrated that our biopsy cohort

had among the highest number of cells sampled per cell-type

and minimal expression of artifactual genes often associated

with sample quality19,20 (Figure S1). We then investigated how

agonal states and the postmortem interval (PMI) affected gene
Cell 186, 4438–4453, September 28, 2023 4439
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Figure 1. A fresh-tissue atlas of cortical states associated with AD pathology

(A) Schematic of the frontal cortex brain biopsy sampling workflow. Brodmann areas are color-coded in the second panel.

(B) CSF Ab-42 (left), phosphorylated tau (middle), and ratio of the two (right) in association with Ab and tau burden scores. The ‘‘ind. AD’’ refers to an independent

cohort of 36 NPH patients who were clinically diagnosed with AD prior to, or within 1 year after, CSF collection. Cohen d (d) effect sizes are reported. Left

represents the regression line with associated standard error and p value. p values in two right panels are based on student’s t test. n.s., not significant.

(C) A summary of datasets that are included in the integrative analysis. pm, postmortem.

(D) Expression of markers of cell classes (top), main neuronal classes (middle), and individual cell types (bottom) across four select human studies. Each row

indicates the normalized expression level of each gene across the four human datasets (color-coded on y axis) and 82 cell types. See also Figure S1 and Table S2.
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expression patterns in different cell types by comparing our bi-

opsy dataset with postmortem data and identifying recurrent

correlates with postmortem interval across datasets. We identi-

fied a small but statistically significant decrease in overall gene

expression in both excitatory (p value < 0.038; meta-analysis)

and inhibitory neurons (p value < 0.024; meta-analysis, Fig-

ure S2A), as well as a trend toward increased gene expression

in microglia (Figure S2A). Consistently, the ratio of glial-to-
4440 Cell 186, 4438–4453, September 28, 2023
neuronal gene expression was lowest in the biopsy dataset

and increased with longer postmortem intervals (Figures S2B–

S2D). Together, our results, in combination with the expression

patterns of artifact-associated genes (Figure S1E), indicate a

mild loss of transcriptional complexity in both inhibitory and

excitatory neurons, as well as a slight increase in artifact-related

genes in microglial cells in response to peri- and postmortem

events.
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Meta-analysis reveals cortical cellular changes in early
AD pathology
To identify cortical tissue changes across the progression of AD

pathology, we divided our biopsy samples into those with only

Ab pathology (Ab+) and those with both Ab and tau pathologies

(Ab+Tau+). In parallel, we also analyzed two AD postmortem

studies3,4 that sampled both neuronal and glial cells from sub-

jects with low Braak pathology staging and one dataset that

only measured glia.6 We first tested for alterations in relative

abundance of cell populations with increasing histopathological

burden. A meta-analysis of cell proportions identified two

neuron types—NDNF-PROX1 and LINC00507-COL5A2—that

were significantly depleted (false discovery rate [FDR]-adjusted

p value < 0.05) (Figure 2A) in samples with mild amyloid pathol-

ogy. The NDNF-PROX1 population expressed NDNF and RELN,

markers of an interneuron type known to reside primarily in

layer 1 (L1) of cortex.21 The LINC00507-COL5A2 population

expressed CUX2 and LINC00507, consistent with a layer 2/3

(L2/3) telencephalic identity.21 Seven additional cell types

showed a trend toward significant loss (0.05 < FDR-adjusted

p value < 0.12; Table S3): two upper-layer excitatory types

(RORB-SCTR, LINC00507-ACVR1C), three inhibitory types

(VIP-HTR3A and SST-PENK that are upper-layer-enriched and

VIP-NPSR1 that spans cortical layers), one microglia type

(CX3CR1), and one oligodendrocyte type (BACE2-L3MBTL4),

whereas one microglia type (GPNMB-LPL) showed a trend to-

ward expansion (Figure 2A). We further confirmed that the

observed changes in neuronal populations do not correlate

with possible confounding factors (Figure S2E). Most impor-

tantly, our meta-analysis revealed similar alterations in neuronal

andmicroglial proportions within each of the published postmor-

tem AD case-control cohorts (Figure 2B), underscoring the

robustness of the observed cellular changes associated with

early-stage AD pathology.

In subjectswith high histopathological burden, the proportional

losses of the NDNF-PROX1 and LINC00507-COL5A2 neuronal

populations were no longer significant (Figures 2A and 2B), likely

due to additional loss of other cortical neurons since the overall

proportions of excitatory and inhibitory neurons were both

lower in these subjects (Figure S2F). Instead, we identified a

significant (FDR-adjusted p value < 0.05) expansion of the

GPNMB-LPL microglia type and loss of the major homeostatic

(HM) microglia population (Figures 2A and 2B). In addition,

although not consistently altered in all three human studies

(meta-analysis p value < 0.11), one astrocyte population express-

ingCHI3L1andGFAP increased inabundance in the late stagesof

disease in our biopsy cohort (p value < 0.05; odds ratio [OR)]: 1.5),

onepostmortemcohort4 (pvalue<0.075;OR:1.6), and inamouse

model of AD22 (p value < 0.02; OR: 1.4) (TableS3). Together, these

results indicate that gliosis becomes an increasingly prominent

feature of cortical tissue as histopathology worsens.

Next, we examined how the transcriptional phenotype of each

cell type changed across the early and late histopathological

stages of AD. We implemented a pseudocell-based strategy,

coupled with mixed-effect modeling and jack-knifing, to robustly

identify differentially expressed (DE) genes in both the Ab+ and

the Ab+Tau+ biopsies (Figure 2C; Table S4). To better under-

stand the association of gene perturbations with the progression
of AD pathology, we compared the transcriptional alterations

across cell types in early- and late-stage samples. For most

cell types and most notably in microglia populations, we

found that the transcriptional alterations quantified in Ab+Tau+

biopsies were consistent with, but stronger than, those changes

measured in Ab+ samples (Figure 2D). However, several ExN

populations showed transcriptional perturbations in the Ab+

samples that were absent in the Ab+Tau+ biopsies (Figures 2C

and 2D), indicating their passage through a distinct transcrip-

tional state early in histopathological progression. To further

assess the extent of overlap in dysregulated transcriptional pro-

grams among related cell populations, we calculated the fraction

of DE genes in each of the seven major cell classes that show

consistent DE within each of their constituent cell types. This

comparison demonstrated that DE genes in each of the seven

major cell classes exhibited highly preserved perturbation pat-

terns (i.e., similar up- or downregulation patterns) within their

related cell types (Figure 2E). Collectively, our DE analyses

demonstrated (1) that perturbation of the transcriptomes in-

creases in magnitude as neuropathology worsens, with the

exception of ExN s, which show a distinct early phase response,

and (2) that individual cell-type responses are largely similar

within a major cell class.

Neuronal loss and hyperactivity in early AD pathology
The strongest proportional change in our meta-analysis of the

early AD pathological stage was the loss of NDNF-PROX1 InNs

(Figure 2A). We therefore wondered whether the loss of these

InNs could contribute to the onset and early progression of AD

by inducing specific transcriptional states in other cortical cell

types. To examine this, we correlated the fraction of NDNF-

PROX1 neurons with the extent of molecular perturbations in

all other cell types (STAR Methods). Applying this analysis to

the Ab+ biopsy samples identified a specific and significant

(FDR-adjusted p value < 0.01) correlation between NDNF-

PROX1 depletion and upregulated ExN DE genes in the

LINC00507-COL5A2 ExNs (Figures 3A and S3A), which them-

selves are vulnerable to loss in early AD pathology (Figure 2A).

Alternative analysis methods confirmed the strength of associa-

tion between the ExN DE signature in LINC00507-COL5A2 and

the loss of NDNF+ expressing cells in Ab+ individuals

(Figures S3B–S3E). Moreover, this association was also signifi-

cant (FDR-adjusted p value < 0.05) within the control biopsy

samples (Figures S3F and S3G), reinforcing that this pair of

neuronal changes—loss of NDNF-PROX1 and induction of a

specific transcriptional state in LINC00507-COL5A2—occur

early in disease. Importantly, the relationship between the InN

loss and ExN transcriptional state was specific to NDNF-

PROX1 and VIP-HTR3A InNs in Ab+ biopsies (Figure 3B), the

two most depleted inhibitory cell types in the early stage of AD,

and was not associated with the loss of other inhibitory

populations.

We next sought to better understand the association of the

ExN DE signature with Ab plaque pathology. Comparison of

ExN DE genes between Ab+ and Ab+Tau+ biopsies revealed a

bimodal pattern among upregulated DE genes (Figure 3C), in

which one DE gene set was evident solely in the early stage of

pathology, whereas another was present in both early- and
Cell 186, 4438–4453, September 28, 2023 4441



Figure 2. Identification of early- and late-stage cellular perturbations in AD

(A) Volcano plot of a meta-analysis of cell-type proportional changes in early- and late-stage AD-related samples. Colors indicate cell class assignment. Dashed

lines represent FDR thresholds of 0.05 and 0.1.

(B) Individual log-odds ratios of six significant cell types in Ab+ (triangles) and Ab+Tau+ samples (circles). Whiskers indicate standard errors.

(C) Number of DE genes in each cell class, stratified by biopsy histopathology. JK, jack-knife.

(D) Fold-change concordance of DE genes between Ab+ and Ab+Tau+ samples. The y axis shows the average log fold-change (logFC) difference between

Ab+Tau+ and Ab+. The Z scores on the x axis are transformations of p values from a paired t test analysis.

(E) Fraction of DE genes in Ab+ and Ab+Tau+ biopsies that are similarly up- or downregulated between the sevenmajor cell classes and their associated subtypes

in biopsy samples (based on top 300 protein-coding DE genes at the cell class). The dendrogram illustrates the subdivision of the seven major cell classes into a

total of 82 subtypes. See also Figure S2G.
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late-stage samples. Given their differences in expression trajec-

tory during AD pathological progression, we asked whether

these two sets of DE genes were differentially correlated with

NDNF-PROX1 inhibitory loss. Only the DE genes specifically

found in response to early AD pathology, particularly within the

LINC00507-COL5A2 population, correlated with NDNF-PROX1

proportional loss (Figure 3D).

The activity of L1 NDNF-expressing InNs plays a crucial role in

the integration of long-range inputs into cortex, particularly
4442 Cell 186, 4438–4453, September 28, 2023
through gain modulation of whole cortical columns.24,25 We

wondered if their loss might alter the excitability of nearby L2/3

pyramidal cells. Indeed, we identified a significant association

between NDNF-PROX1 loss and upregulation of neural activity

response genes23 specifically within LINC00507-COL5A2 ExNs

in Ab+ individuals (FDR-adjusted p value < 0.01; Figure 3E).

Furthermore, Ab+ biopsy samples with a greater proportional

loss of NDNF-PROX1 cells showed a higher percentage of

LINC00507-COL5A2 cells expressing canonical activity-regulated



Figure 3. NDNF-PROX1 inhibitory neuron loss is associated with a hyperactivity signature in L2/3 excitatory neurons

(A) Logistic mixed-effect model regression of NDNF-PROX1 proportion versus cell-type transcriptional signature in Ab+ subjects. The dashed horizontal line

represents the FDR threshold of 0.05.

(B) Associations (by logisticmixed-effectmodel) between the proportion of each inhibitory neuron typewith each excitatory type’s transcriptional signature in Ab+

subjects. The red dots indicate the LINC00507-COL5A2 ExNs. See also Figure S3H.

(C) Scatterplot comparing the Ab+ and Ab+Tau+ logFC in the ExNs (union of top 300 protein-coding DE genes based on jack-knifed p value).

(D) Logistic mixed-effect model regression of NDNF-PROX1 proportion versus early-specific upregulated DE genes (green dots in C) and upregulated DE genes

shared in both Ab+ and Ab+Tau+ samples (blue dots in C) for each ExN cell type.

(E) Logistic mixed-effect model regression of NDNF-PROX1 cell fraction versus expression of neural activity signatures23 in each ExN type in Ab+ samples (one-

sided). PRGs, primary response genes; SRGs, secondary response genes.

(F) Scatterplot showing normalized NDNF-PROX1 fraction (x axis) and the percent of LINC00507-COL5A2 ExNs with high expression of core immediate early

genes (y axis, STAR Methods) in Ab+ subjects. Linear regression line and associated standard error range are represented. A logistic mixed-effect model was

used to calculate the p value.

(G) GSEA of Reactome pathways on DE results across ExN types. Dots outlined in black denote significant terms (FDR-adjusted p value < 0.05).

(H) Concordance of DE genes between different stages of AD pathology within excitatory neuron cell types (Student’s t test). The LINC00507+ and RORB+ were

selected as upper-layer excitatory neurons and FEZF2+, CTGF+, and THEMIS+ populations as lower layer.

(I) Representation of select ExN DE genes. The outlined dots represent DE genes with jack-knifed FDR-adjusted p value < 0.01.

(J) GSEA of human Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways onWIF1+ homeostatic astrocytes. Outlined dots represent significant terms

(FDR-adjusted p value < 0.1).

(legend continued on next page)
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genes26 (FOS, JUNB, ARC, NPAS4, ERG1, and ERG2;

p value < 0.014; Figure 3F). Increased activity of ExNs would be

expected to alter their metabolism. Consistent with this, gene

set enrichment analysis (GSEA) demonstrated increased expres-

sion of metabolism- and mitochondria-related gene sets specif-

ically in biopsies with the lowest level of Ab plaque burden, further

reinforcing the relevance of the hyperactivity phenotype to the

early stages of AD pathology (Figure 3G). The enrichment of these

terms was diminished in biopsies with higher AD pathological

burden (Figure 3G), a pattern that was stronger in upper-layer

ExNs. Congruently, comparing samples with the lowest Ab

burden with Ab+Tau+ demonstrated a significantly higher diver-

gence of the DE patterns of upper-layer neurons compared with

the lower layer ExNs (p value < 0.003; Student’s t test; Figure 3I).

Collectively, our results demonstrate that NDNF-PROX1 InN loss

is correlated with hyperactivity and preferential loss of L2/3 ExNs

in the prefrontal cortex with low Ab plaque burden.

Hyperactivity of neurons can perturb pre- and post-synaptic

mechanisms.27 In ExNs from subjects with low Ab burden, we

identified upregulation of SNAP25, SYT1, and CDK5, which are

involved in presynaptic vesicle release28–30 (Figures 3G and 3I).

Increased activity of the presynaptic vesicle cycle can elevate

Ab production.31 Congruently, we found upregulation of genes

encoding for protein components involved in Ab fibril formation,

such as APP itself, only in the Ab-low disease samples

(Figures 3G and 3I). The oligomeric Ab receptor genes PRNP,

ATP1A3, and PGRMC1, whose protein products influence

neuronal activity and synapse functioning through the modula-

tion of N-methyl-D-aspartate (NMDA) receptors32 and neuronal

calcium signaling,33 were similarly upregulated in ExNs at the

early stages of AD pathology (Figure 3I). HM astrocytes also

play critical roles in supporting synaptic function and coordi-

nating antioxidant responses, especially in the context of

neuronal hyperactivity.34,35 In our integrative analysis of astro-

cytes, we identified one WIF1+ type with low expression of

GFAP and high expression of EAAT1, EAAT2, andGSTP1 genes,

which encode for critical components of glutamate/glutathione

cycling (Figures S3I and S3J). The WIF1-expressing astrocytes

showed enrichment of DE genes related to glutathione meta-

bolism, lysosomal machinery, and fatty acid degradation specif-

ically in subjects with low Ab burden (Figure 3J), consistent with

gene sets previously reported to be upregulated in the astrocytic

response to hyperactive neurons.35 Together, these results sug-

gest that aberrant activity and metabolism of upper-layer pyra-

midal cells perturb synapse homeostasis and astrocyte func-

tioning in the brain.

Through multiple lines of evidence, we identified hyperactivity

of the upper-layer pyramidal neurons in biopsy samples with low

Ab burden that is associated with a selective loss of upper-layer

inhibitory and excitatory neurons. To confirm these patterns and

establish their functional relevance to AD pathological course,

we conducted electrophysiological experiments on acute slices
(K) Acute slice physiology experiment on biopsy specimens from an independent

in acute slices treated with NMDA from control subjects (Ctrl, n = 10), subjects w

mean spike activity of electrodes for each individual. The p value was computed

Center line, median; box limits, upper and lower quartiles; whiskers, 1.53 interqua

threshold of 0.05.
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from frontal cortex biopsy samples of an independent cohort of

26 living individuals, including eight samples with low levels of

Ab, eight samples with a high burden of Ab, and 10 Ab-free con-

trol samples. To assess hyperactivity, baseline neuronal activity

was induced in control and Ab+ samples through treatment with

NMDA (Figure S4). In addition to L2/3 pyramidal neurons, we

alsomeasured spike activity levels in L5 ExNs as a negative con-

trol. Consistent with our results from the analysis of single-nu-

cleus transcriptome data, we observed higher bursting activity

in upper-layer ExNs from samples with low Ab burden (Fig-

ure 3K). In contrast, L5 ExNs exhibited similar activities between

Ab+ and control samples (Figure 3K). These findings provide

direct functional evidence of hyperactivity of L2/3 ExNs in the

human brain at the early stages of AD pathology.

Expanded microglia populations with AD-specific
alterations
Our integrative analysis across four AD-related cohorts indicated

a mild expansion of GPNMB-expressing microglia at early

stages of AD pathology that further expanded in samples with

higher histopathological burden (Figure 2A). Human genetics

and transcriptome studies have implicated microglia in the AD

pathogenic process.36–39 A reactive population expressing

GPNMB was also identified as enriched in an AD animal model

near amyloid plaques,40 but its connection to human in vivo mi-

croglial states—in AD, normal aging, and other diseases—re-

mains debated. To more deeply explore microglial states in AD

pathology, we leveraged our well-powered integrative analysis

of 400,743 microglia profiles across human and mouse studies

from diverse brain regions and biological conditions, including

59,624 high-quality microglia nuclei (median number of genes

per nucleus = 2,384) from our biopsy cohort. We more deeply

sub-clustered the microglia profiles into a total of 13 microglial

states (Figures 4A and 4B), including five HM states, a chemo-

kine-enriched state (CRM-CCL3), three reactive states express-

ing GPNMB (GPNMB-NACA, LPL-CD83, and GPNMB-EYA2),

an interferon gene-enriched state (IRM-IFIT2), and a proliferative

(Prolif) state (Figures 4A and 4B; Table S2). Comparing the mi-

croglia populations, we observed the downregulation of micro-

glial markers such as CX3CR1 and CSF1R in the three

GPNMB-expressing populations relative to the HM microglial

cells (Figure 4A). Markers of microglia states correlated strongly

across different human brain regions, which is consistent with

previous reports41,42 (Figures S5A–S5D).

Differential expression analysis across all microglia in our

cohort identified a pattern that was highly similar in each of the

13 states (Figure S5E), suggesting that all microglia states

respond similarly to Ab accumulation. This transcriptional

pattern was also highly consistent across postmortem cohorts

and increased in magnitude with further clinical progression

of AD (Figures S5F–S5H). The DE signature showed upregula-

tion of genes involved in phagocytosis (COLEC12), antigen
cohort of 26 individuals. Boxplots quantifying the number of bursts per second

ith low Ab burden (n = 8), and with high Ab burden (n = 8). Each dot represents

by a regression analysis with age as a covariate. In all panels with boxplots,

rtile range. See also Figure S4. In (B), (D), and (E), the dashed lines indicate FDR
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Figure 4. Precise molecular definitions of microglial states activated in early and late AD

(A) Normalized pseudobulk expression of select microglia marker genes across human datasets.

(B) Representation of 13 microglia states.

(C) Dot plot of p values from MAGMA (Multi-marker Analysis of GenoMic Annotation) enrichment analysis43 of AD, PD, or ASD genetic risk in the upregulated DE

genes of each cell class. Dashed line represents an FDR threshold of 0.05.

(D) Dot plot of p values for a Fisher’s exact test assessing the overlap between microglial DE genes with top 100 markers of each of the 13 microglial states.

(E) Radar plot representation of enriched gene sets in differential markers of the three GPNMB-LPL microglial states.

(F) Association of proportion of each microglial state with early and late AD pathology, as well as PD and ASD. In meta-analysis columns, black dots represent

microglia states with FDR-adjusted p value < 0.05. Points are scaled by the absolute Z scores.

(G) Fraction ofmarkers shared between the biopsy cohort and each other dataset (y axis), in eachmicroglial state (x axis). Datasets are stratified by species.Mean

values are denoted with a line.

(H) Statistical comparison of the differences in (G) by Student’s t test. The dashed line represents an FDR threshold of 0.05.

See also Figure S5.
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presentation (CD74 and members of HLA family), lipoprotein

metabolism and biosynthesis (APOE, OLR1, and ATG7), fatty

acid metabolism (ACSL1), autophagy (ATG7 and ATG16L2),

and lysosomal function (ASAH1, NPC2, SLC11A1, and PSAP)

(Table S4). Underscoring the pathological relevance of this com-

mon microglial DE signature, we found that it was significantly

(FDR-adjusted p value < 0.05) enriched for the expression of

genes implicated in AD by common variant case-control

studies,36,37 including APOE,MS4A6A/4A, TREM2, and INPP5D

(Figure 4C; STAR Methods). In addition, intersection of this DE

signature with marker genes for each of the 13 states showed

highly significant overlap with markers of GPNMB-EYA2 and

LPL-CD83 microglia (FDR-adjusted p value < 0.001; Fisher’s

exact test; Figure 4D), indicating a transcriptional transition

across all microglia cells toward a state resembling the

GPNMB-EYA2 and LPL-CD83 populations.

We focused particularly on the three reactiveGPNMB+ states,

given their disease relevance. All three states highly expressed

genes related to microglial reactivity, including APOE, ITGAX,

MITF, and SGK1 (Figure 4A). However, comparative marker

analysis between the three states revealed substantial differ-

ences. The GPNMB-NACA population preferentially expressed

genes involved in antigen processing and presentation, as well
as lysosomal and phagosomal function, relative to the other

two states (Figure 4E). By contrast, the GPNMB-EYA2 microglia

preferentially expressed genes involved in autophagy (e.g.,

IGF1R, ATG7, and ATG16L2) and response to insulin (e.g.,

MYO5A, IGF1R, and PPARG) (Figure 4E). This cell state also ex-

pressed interleukin (IL)-15, a key modulator of the nervous sys-

tem inflammatory response44 (Figure 4A). The LPL-CD83 micro-

glia expressed genes, including TGFBR1 and SMAD3, which

encode for key proteins in transforming growth factor (TGF)-b

signaling (Figure 4A), and showed enrichment of genes involved

in extracellular structure organization, response to cytokines,

focal adhesion, and actin cytoskeleton (Figure 4E). Both IL15

and TGF-b also mediate neuroinflammatory cross-talk between

astrocytes andmicroglia.45,46 Supporting this notion, we found a

strong positive correlation between the expression of GFAP in

astrocytes and the expansion of GPNMB-EYA2 and LPL-CD83

microglia states in our cohort (Figure S5I). Together, we find

transcriptional heterogeneity among reactive microglia cells in

human brains that points to specialized functional roles in re-

sponding to cues from their surrounding microenvironment.

We next conducted a meta-analysis to ask which of these mi-

croglial states is specifically enriched in AD and how these states

relate to those found in other neurodegenerative diseases and
Cell 186, 4438–4453, September 28, 2023 4445



ll
Resource
disease models. Across the three AD-related datasets with suf-

ficient numbers of microglia to power proportional testing,

we identified an expansion of the LPL-CD83 and GPNMB-

EYA2 states in both early and late stages of AD histopathology

(FDR-adjusted p value < 0.05; Figure 4F). Interestingly, the

GPMNB-EYA2 state was also enriched in a meta-analysis of

two PD datasets (FDR-adjusted p value < 0.002; Figure 4F),

whereas LPL-CD83 was exclusively expanded across the AD

datasets. Neither GPNMB-expressing microglia population

was expanded in individuals with ASD, underscoring the specific

role of these microglia in neurodegenerative diseases. In con-

trast to the human datasets, only the GPNMB-NACA state was

consistently expanded in AD mouse models (Figure S5J). This

state was also increased in several other mouse datasets,

including a model of amyotrophic lateral sclerosis, in both juve-

nile and aged mice, and in response to demyelinating injury (Fig-

ure S5J). To better understand the underlying factors contrib-

uting to this apparent divergence in microglia response, we

performed a systematic marker analysis of the 13 microglia

states across the human and mouse datasets that are included

in our integrative analysis. As expected, we found that microglia

states are highly consistent across human datasets. Although

human microglia states were less preserved in the mouse data-

sets overall, preservation was notably lower for the mouse LPL-

CD83 andGPNMB-EYA2 states (Figures 4G and 4H), suggesting

that these transcriptional states are less well recapitulated by

laboratory mice. Corroborating this finding, we observed that

the cis-regulatory regions of marker genes for GPNMB-EYA2

and LPL-CD83 populations are significantly enriched in hu-

man-accelerated regions (HARs),47 fast-evolving regions of the

human genome that modulate human-specific transcriptional

regulatory programs (Figure S5K). Collectively, our results

demonstrate shared and AD-specific microglia responses to dis-

ease in the human brain and selective divergence of the most

disease-relevant states in mouse models.

Amyloidogenic cell populations in human frontal cortex
The production of amyloid in the brain has largely been assumed

to be only in neurons but has been challenging to directly study in

human tissue. We leveraged our high-quality surgical biopsy

dataset to assess amyloidogenicity in each cell type using

transcriptional signatures as a proxy. We took an unbiased

approach, assessing the enrichment of a set of 45 genes known

to regulate Ab production and secretion in each cell type

(Table S5). Interestingly, GSEA against an ordered list of DE

genes for each of the seven cell classes identified not

only ExNs but also oligodendrocytes as having significant,

positive enrichment for the amyloid gene set (FDR-adjusted

p value < 0.05, Figure 5A). The enrichment in these two cell clas-

ses was robust to the statistic used to order genes (Figure S6A).

A leading-edge analysis identified specific genes that were high-

ly upregulated (including APP, LRRTM3, and ITM2B) and down-

regulated (such as BACE2, SORL1, and PICALM) in Ab+ biopsy

samples (Figure S6B).

The unexpected enrichment of amyloid-related genes in oligo-

dendrocytes prompted us to investigate whether they share a

common DE gene signature with ExNs. Indeed, ExN DE genes

overlapped most with those of oligodendrocytes (FDR-adjusted
4446 Cell 186, 4438–4453, September 28, 2023
p value < 0.05; Figures 5B and S6C), despite oligodendrocytes

sharing the greatest gene expression identity with OPCs (Fig-

ure S6D). A gene ontology analysis of the intersecting co-regu-

lated genes identified enrichment of amyloid fibril formation

(Figure 5C), further suggesting a similar, shared Ab-related

response. This signature was most prominent in the samples

with lowest Ab burden for both ExNs and oligodendrocytes

(FDR-adjusted p value < 0.05, Figures 5D, S6E, and S6F). Lead-

ing-edge analysis revealed DE genes involved in multiple as-

pects of amyloid processing, including downregulation of genes

known to either decrease Ab peptide production or increase

clearance, such as SORL1, BACE2, and PICALM. We also de-

tected upregulation of genes involved in amyloid formation,

including RAB11A, LRRTM3, and APP itself (Figures 5E and

5F). Crucially, the Ab gene set was enriched across oligodendro-

cytes in a meta-analysis of postmortem cohorts with low AD

histopathology3,4 (Figure S6G), but not in DE genes from other

disease states, including PD,49,50 ASD,51 and MS52 (Figure 5G),

reinforcing its robust and specific association with AD across

cohorts.

To experimentally assess the relative Ab-forming potential of

these two cell populations, we differentiated the H1 embryonic

stem cell (ESC) line into oligodendrocytes (iOligos) and ExNs

(iExNs) (Figure 6A). Single-cell analysis (Figure 6B) of our iOligo

cultures showed robust expression of numerous genes known

to play roles in myelin function, such as MBP, PLP1, and CNP,

as well as transcription factors important for oligodendrocyte dif-

ferentiation and maturation, such as SOX10 and NKX2-2

(Figures 6C and S7D–S7F). These genes were not expressed

at high levels in iExNs, which instead expressed canonical

neuronal marker genes like RBFOX3, SLC17A7, and TUBB3

(Figures 6C and S7A–S7C). Importantly, both cultures expressed

appreciable levels of all the necessary machinery to produce

b-amyloid protein (Figure 6D). Furthermore, immunohistochem-

istry of key proteins defining the oligodendrocyte lineage, such

as MBP and O4, showed a linear, significant increase upon in-

duction of SOX10 (Figures 6E and S7I, p value < 0.05, linear

mixed-effect model), whereas markers of other cell types were

not significantly associated (Figures S7G and S7H). An ELISA-

based quantification of Ab peptides in iOligos showed a 3-fold

increase in Ab upon SOX10 induction (Figure 6F), similar to the

increase observed upon iExN induction (Figure 6F). Indeed, the

total abundance of Ab—when corrected for the total number of

mature cells in the culture—was not significantly different (p =

0.497, Student’s t test, Figure 6F) between iExNs and iOligos

at their respective differentiation endpoints, suggesting a similar

intrinsic capacity to produce Ab. As predicted by our transcrip-

tional analyses, we could not detect any Ab in media taken

from ESC-derived microglia cultures (Figure S7J). Furthermore,

treatment of both iOligos and iExNs with beta-secretase

(BACE) or gamma-secretase inhibitors caused a 10-fold reduc-

tion in total Ab protein levels in both cell types (Figure 6G). Finally,

we sought to determine whether the species composition of am-

yloid peptide production was significantly different between cell

types given the well-established higher aggregation and amyloid

formation potential of longer species. We found that Ab species

ratios were not significantly different (p value = 0.64, Student’s

t test, Figure 6H) between iOligos and iExNs, suggesting that
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Figure 5. Cell-type-specific dysregulation of amyloid formation in the human frontal cortex

(A) GSEA trace plot of amyloid-associated gene set across the seven cell classes. The x axis shows the rank order of the DE genes (signed p value) in corre-

sponding cell classes; the y axis is the normalized enrichment scores (NESs) fromGSEA. The dashed line indicates NES score corresponding to an FDR threshold

of 0.05.

(B) Dot plot of FDR-adjusted p values of GSEA results of the top 300 upregulated protein-coding genes (sorted by their jack-knifed p values) from each cell class

against an ordered list of DE genes in oligodendrocytes. Dotted red line indicates the FDR threshold of 0.05.

(C) Gene ontology terms significantly enriched in intersect of DE genes between oligodendrocytes and excitatory neurons from REVIGO.48 Size of dots denote

significance. MDS, multi-dimensional scaling.

(D) GSEA results of amyloid gene set against cell-type level DE genes across increasing levels of Ab and tau burden. Cell types are grouped based on their major

cell class annotations. The dashed line represents the FDR threshold of 0.05.

(E) Schematic of the amyloid metabolism pathway. See also Table S5. Shaded bars indicate standard error.

(F) ExN and Oligo DE results across increasing levels of Ab and tau burden for genes found by the leading-edge analysis in (A).

(G) GSEA results for the amyloid gene set on Oligo DE genes from postmortem AD, PD, MS, and ASD cohorts.

See also Figure S6.
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oligodendrocyte-derived Ab peptides could contribute to AD-

related amyloidosis in similar ways to ExNs.

DISCUSSION

Therapeutic trials of AD have made increasingly clear the impor-

tance of early intervention in the disease,2 but identifying the

cellular states occurring in human tissue at early disease stages

has been challenging. Here, we leveraged a unique cohort of fresh

human brain biopsy tissue to identify cellular perturbations—
which we collectively refer to as the ECAR—that are specifically

present in tissue at the earliest stages of AD pathology. One

prominent ECAR component was the identification of a hyperac-

tive, hypermetabolic signature within ExNs, which was confirmed

in an independent cohort by slice electrophysiology. It was also

associated with an astrocytic upregulation of glutathione meta-

bolism and fatty acid degradation, suggesting dysregulation of

synapse homeostasis in response to aberrant neuronal activ-

ity.34,35 Furthermore, this upper-layer hyperactivity phenotype

was tightly coupled with the loss of a specific NDNF-expressing
Cell 186, 4438–4453, September 28, 2023 4447
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Figure 6. Quantitation of Ab production by human mature iOligo and iExN cultures

(A) Schematic of experiments performed with iOligos and iExN cultures. NPCs, neural progenitor cells.

(B) Two-dimensional representation of single-cell expression profiles obtained from iOligo (left) and iExN (right) differentiation protocols.

(C and D) Expressions of key marker genes (C) and Ab processing genes (D) in iOligo and iExN cultures.

(E) Immunofluorescence stains of O4 and MBP in iOligo cultures 5 days after doxycycline addition.

(F) Normalized Ab protein abundance for iExNs (top) and iOligos (bottom) across differentiation.

(G) Fractional abundance of Ab protein levels relative to median Ab protein levels in DMSO condition for presenillin (PSEN) inhibitor-treated and BACE inhibitor-

treated conditioned media samples for iOligos and iExNs. Error bars indicate one SD above and below the mean.

(H) Ratio of Ab-38 to Ab-40 (left) and Ab-40 to Ab-42 (right) species from culture conditioned media. In all panels with boxplots, Center line, median; box limits,

upper and lower quartiles; whiskers, 1.53 interquartile range; points, outliers.

See also Figure S7.
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L1 interneuron population early in disease progression.NDNF-ex-

pressing interneurons are most active in states of arousal,25 and

their activation is positively correlated with associative learning,53

suggesting that their lossmay directly affectmemory formation. In

addition, a recent study of NDNF-expressing neurons in the hip-

pocampus found that their potentiation led to an inhibitory shift

at excitatory synapses between entorhinal cortical projections

and CA1 neuronal dendrites.54 The loss of this cell type could

thus help seed foci of aberrant excitation, further aggravating

the acute effects of Ab accumulation in the tissue. Hyperactivity

has been observed in animal AD models that either overexpress

APP or are exposed to Ab-containing extracts from AD pa-

tients.32,34,55,56 In addition, measurement of synaptic markers in

postmortem brains from AD-affected individuals indicates an

increased excitatory-to-inhibitory ratio in temporal and parietal

cortices, favoring hyperexcitability.57,58 Our work in human tissue

finds that hyperactivity is a prelude to subsequent upper layer

ExN loss and postulates a mechanism—loss of a specific InN

population—that could contribute to its onset.

The second ECAR component is the expansion of two acti-

vated microglial states, one of which (GPNMB-EYA2) is shared

between AD and PD and the other (LPL-CD83) is expanded

only in AD. Onemeans by whichmicroglia protect against neuro-

degeneration is through the autophagy-mediated clearance of

Ab59 and a-synuclein,60 a convergence that could explain the

expansion of the GPNMB-EYA2 population—enriched for auto-

phagy-related genes—in both AD and PD. The LPL-CD83 popu-

lation—whose expansion is AD-specific—shows high expres-

sion of TGF-b signaling components, including TGFBR1 and
4448 Cell 186, 4438–4453, September 28, 2023
SMAD3, which both promote Ab clearance by microglia61 and

mediate tissue repair.62 According to our integrative analysis,

neither of these cell states was expanded in the examined AD

mouse models, and the states themselves showed more molec-

ular divergence between species than other microglial states,

arguing for the importance of human samples when studying

these highly disease-relevant cells. Interestingly, exposure of hu-

man ESC-derived microglia to diverse brain-related challenges

was recently shown to induce in vitro cellular states that tran-

scriptionally resemble ourGPNMB+ states (e.g., high expression

of GLDN, CD83, PPARG, and MYO1E).63 It will be important to

more deeply characterize these states genomically and to study

their functional properties, such as capacity for phagocytosis,

synaptic engulfment, and neuroinflammatory potential.

The last ECAR component we identified was a shared signa-

ture, in both oligodendrocytes and excitatory neurons, of differ-

entially regulated genes associated with Ab production. This

signature peaked, especially in the earliest stages of Ab deposi-

tion.64 Because our signature derives frommeasurements made

from human biopsy tissue, it provided us with a unique opportu-

nity to uncover the molecular mechanisms underlying excess

production and accumulation of Ab in early stages of AD pathol-

ogy in the human brain. Upregulated genes in this signature en-

coded for pro-amyloidogenic factors such as LRRTM3, and

RAB11A, as well as APP itself, whereas ITM2B, SORL1, and

BACE2were downregulated. Themisregulation of these specific

genes within human diseased tissue nominates them as espe-

cially promising targets for therapeutic intervention into early

b-amyloid accumulation.
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Prior work in animal cells andmodels has suggested that other

cell types, beyond ExNs, could be sources of amyloid.65,66 Our

in vivo and in vitro analyses indicate that in humans, Ab produc-

tion is possible in both oligodendrocytes and excitatory neurons.

We further utilized our human culture system to validate func-

tionality of the b-amyloid pathway by way of chemical knock-

downs of key enzymatic proteins. Neuropathological studies

have postulated an inverse relationship between myelination

and AD pathology,67 prompting hypotheses that myelin break-

down may play a causal role in the disease.68 Additionally, white

matter regions are some of the first to exhibit a high burden of

oligomeric Ab.69 These studies, coupled with our results, under-

score the relevance of the interface between neuronal axons and

oligodendrocytic bodies to AD pathogenesis.

Our integrative analysis illustrates that cell-type identities are

more resilient to peri- and postmortem effects compared with

expression patterns of individual genes and can be accurately

recovered by anchoring to high-quality datasets. From this

work, we conclude that single-cell brain datasets are generally

of sufficient consistency and quality that it is possible to conduct

cumulative, highly informativemeta-analyses. Such analyses will

not only ensure the consistency of biological findings across

multiple cohorts but also enable comparative analyses—as we

performed here—to assess the specificity of a state for a partic-

ular disease. To further facilitate this endeavor, we have estab-

lished a web-based resource (available at https://braincelldata.

org/resource) where individual scientists can align their own

data with our integrative analysis, providing a common language

for understanding cell-type-specific changes in different dis-

eases. We expect that the continued accrual of data from

more donors, regions, species, and related conditions will pro-

vide additional crucial insights into the pathogenic process of

AD and other diseases of the brain.

Limitations of the study
Our study necessarily focused on cell states and cell loss asso-

ciated with AD pathology in the frontal cortex, owing to the lim-

itations of obtaining fresh biopsy tissue from other brain areas.

Additional experiments—potentially leveraging cell-type-spe-

cific proteomic labeling70,71 or laser capture microdissec-

tion—will be needed to definitively establish the contribution

of specific cell types to amyloid production. Finally, neuronal

transcriptional states appear to be less well preserved in post-

mortem tissue, and hence, more mechanistic studies of the hy-

peractivity state that precedes neuronal loss may particularly

require the use of acute biopsy slices as well as select cellular

and animal models.
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Antibodies

Human Oligodendrocyte O4 antibody R&D systems Cat#MAB1326; RRID:AB_357617

Anti-MBP antibody Millipore Sigma Cat#AB9348; RRID:AB_11213157

Anti-NeuN antibody Millipore Sigma Cat#MAB377; RRID:AB_2298772

Anti-PAX6 antibody Abcam Cat#AB78545; RRID:AB_1566562

W0-2 primary antibody Sigma-Aldrich Cat#MABN10

Goat anti-Mouse IgG Thermo Fisher Cat#A-11004; RRID:AB_2534072

6F3D amyloid-beta antibody DAKO Cat#M0872; RRID:AB_2056966

AT8 p-tau antibody Thermo Fisher Cat#MN1020; RRID:AB_223647

Biological samples

Human brain specimens Kuopio University Finland N/A

Chemicals, peptides, and recombinant proteins

Puromycin Dihydrochloride Thermo Fisher Cat#A1113803

E8 Media Thermo Fisher Cat#A2858501

ReleSR media Stem Cell Technologies Cat#05872

Gibco MEM solution Thermo Fisher Cat#11140-050

2-mercaptoethanol Thermo Fisher Cat#21985023

N2 supplement Thermo Fisher Cat#17502048

B27 supplement Thermo Fisher Cat#12587010

Insulin solution Sigma Aldrich Cat#I9278

Retinoic acid Sigma Aldrich Cat#R2625

SB431542 ReproCell Cat#04-0010-10

LDN193189 ReproCell Cat#04-0074

Smoothened agonist EMD Millipore Cat#566660

Accutase Thermo Fisher Cat#A1110501

poly-L-ornithine Sigma Aldrich Cat#P3655

Laminin Sigma Aldrich Cat#L2020

Doxycycline Sigma Aldrich Cat#D9891

XAV939 ReproCell Cat#04-00046

Neurobasal media Gibco Cat#21103049

BDNF R&D systems Cat#248-BD/CF

CTNF R&D systems Cat#257-33 NT/CF

GDNF R&D systems Cat#212-GD/CF

Triton-X Sigma Aldrich Cat#T9284

Prolong with NucBlue Thermo Fisher Cat#P36981

Matrigel VWR Cat#47743-716

mTesR1 StemCell Technologies Cat#85857

Versene Fisher Scientific Cat#BE17-711E

RevitaCell Thermo Fisher Cat#A2644501

PBS Thermo Fisher Cat#10010049

2% low-melting point agarose SeaPlaque, Lonza Cat#50101

NMDA Sigma Aldrich Cat#M3262

NMDG-methyl-D-Glucamine Sigma-Aldrich Cat#M2004

KCl Scharlau Chemicals Cat#PO02001000

HEPES VWR Cat#0511

(Continued on next page)
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NaHCO3 VWR Cat#27778.260

NaH2PO4 VWR Cat#28015.294

Na-Pyruvate Fisher Scientific Cat#BP356

Thiourea Sigma-Aldrich Cat#T7875

Na-Ascorbate VWR Cat#27688.235

MgCl2 VWR Cat#E525

CaCl2 VWR Cat#190464K

Glucose VWR Cat#101175P

Critical commercial assays

10x Genomics v3 kit 10x Genomics Cat#1000075

V-Plex Plus Ab Peptide Panel 1 (6E10) ELISA kit MesoScale Discovery Cat#K15200G

Deposited data

Raw and analyzed biopsy data This paper braincelldata.org/resource

AD snRNA-Seq dataset Mathys et al.3 Synapse portal: syn18485175

AD snRNA-Seq dataset Leng et al.4 Synapse portal: syn21788402

AD snRNA-Seq dataset Lau et al.5 GEO: GSE157827

AD snRNA-seq dataset Gerrits et al.6 GEO: GSE148822

AD snRNA-seq dataset Zhou et al.72 Synapse portal: syn21125841

AD snRNA-seq dataset Grubman et al.73 GEO: GSE138852

AD single soma RNA-seq dataset Otero-Garcia et al.7 GEO: GSE129308

PD snRNA-seq dataset Kamath et al.49 GEO: GSE178265

PD snRNA-seq dataset Smaji�c et al.50 GEO: GSE157783

MS snRNA-seq dataset Jäkel et al.52 EGA: EGAS00001003412

ASD snRNA-seq dataset Velmeshev et al.51 SRA: PRJNA434002

Human snRNA-seq dataset Li et al.74 PsychENCODE

Human snRNA-seq dataset Lake et al.75 GEO: GSE97942

Human snRNA-seq dataset Habib et al.76 Single cell portal

Human snRNA-seq dataset Hodge et al.77 Allen Brain Atlas data portal

Human snRNA-seq dataset Bakken et al.21 Allen Brain Atlas data portal

Mouse brain sc/sn RNA-seq dataset Yao et al.78 RRID: SCR_016152

Mouse brain scRNA-seq dataset Bhattacherjee et al.79 GEO: GSE124952

Mouse AD snRNA-seq dataset Habib et al.22 GEO: GSE143758

Mouse AD snRNA-seq dataset Zhou et al.72 GEO: GSE140511

Mouse microglia scRNA-seq dataset Hammond et al.80 GEO: GSE121654

Mouse MARS-seq dataset Keren-Shaul et al.40 GEO: GSE98969

Mouse microglia scRNA-seq dataset Sierksma et al.81 GEO: GSE142267

Mouse microglia scRNA-seq dataset Sala Frigerio et al.82 GEO: GSE127893

Mouse scRNA-seq dataset Dulken et al.83 Bioproject: PRJNA450425

Mouse scRNA-seq dataset Masuda et al.84 GEO: GSE120747

Mouse scRNA-seq dataset Zywitza et al.85 GEO: GSE111527

Mouse scRNA-seq dataset Chen et al.86 GEO: GSE87544

Human reference genome NCBI build 37,

GRCh37 (hg19)

Genome Reference Consortium GRCh37 (hg19)

Experimental models: Cell lines

H1 stem cell line WiCell H1

Recombinant DNA

TALEN-L plasmid Addgene Cat#59025

TALEN-R plasmid Addgene Cat#59026

(Continued on next page)
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Bcl-XL plasmid Addgene Cat#8790

Software and algorithms

FUMA Watanabe et al.87 https://fuma.ctglab.nl

MAGMA v1.08 de Leeuw et al.43 https://ctg.cncr.nl/software/magma

DropSeqTools Macosko et al.88 https://github.com/broadinstitute/Drop-seq

CellProfiler4.2.5 Stirling et al.89 https://cellprofiler.org/

Discovery Workbench 4.0 Meso Scale Diagnostics https://www.mesoscale.com/en/products_and_

services/software

R v4.0.4 R core team https://www.R-project.org/

Neuroexplorer Nex Technologies https://www.neuroexplorer.com

MATLAB MathWorks https://www.mathworks.com/products/matlab.html

MCS Experimenter v2.15 MultiChannel Systems https://www.multichannelsystems.com/software/

multi-channel-experimenter
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RESOURCE AVAILABILITY

Lead contact
Inquiries about further information and requests for resources and reagents should be directed to the LeadContact, Evan Z.Macosko

(emacosko@broadinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All generated snRNA-seq data and the results of our integrative analysis of 28 single-cell/nucleus studies are publicly available

at: https://braincelldata.org/resource. This includes sample annotations related to the dataset source (36 datasets across 28

studies), cell identifiers (e.g., cell barcodes), quality metrics, and cell type annotations from integrative analysis. We have also

included functionality to perform several analyses in a fast and efficient way, including: examination of the integration solutions,

performing marker analysis across all of the datasets, and exploring differentially expressed genes.

d The code used to generate results presented in this manuscript are publicly available as a Terra workspace (https://app.terra.

bio/#workspaces/fbrihuman/sconline_integrative_analysis).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Primary biopsy cohort
The cohort used for snRNA-seq analysis included biopsy specimens from 52 patients that were evaluated for adult hydrocephalus

with NPH symptoms at the Kuopio University Hospital. They included 47 with idiopathic normal pressure hydrocephalus, 3 with pre-

viously unrecognized congenital hydrocephalus and 2 with acquired hydrocephalus. The 52 individuals included 30 males and 22

females with a mean age of 73 years (standard deviation: 7 years), all of Finnish ancestry. Assessment of biopsy samples by a neuro-

pathologist under light microscopy identified 19with Ab plaques (Ab+), eight with both Ab plaques and phosphorylated tau pathology

(Ab+Tau+), and 25 biopsies that had neither histopathology. Patients were consented for retrieval of brain biopsies during ventricu-

loperitoneal shunt placement for treatment of their symptomatic adult hydrocephalus. The biopsy procedure was approved by the

Research Ethics Committee of the Northern Savo Hospital District (decision No. 276/13.02.00/2016). See Table S1 for more details.

Validation cohort
The validation cohort for the electrophysiological experiments included biopsy specimens from 26 individuals. Similar to the main

biopsy cohort, these individuals were evaluated for an adult hydrocephalus with NPH symptoms at the Kuopio University Hospital.

The 26 individuals included 14males and 12 females with amean age of 74 years (standard deviation: 6 years). Assessment of biopsy

samples by a neuropathologist under light microscopy identified 16 out of 26with Ab pathology. Patients were consented for retrieval

of brain biopsies during ventriculoperitoneal shunt placement for treatment of their symptomatic adult hydrocephalus. The biopsy

procedure was approved by the Research Ethics Committee of the Northern Savo Hospital District (decision No. 276/13.02.00/

2016). See Table S1 for more details.
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Cell lines
TheH1 embryonic stem cell line (male sex) was used to derive iExNs and iOligos formeasurement of amyloid-beta peptides. Cell lines

were maintained under standard incubator conditions, at 37�C and 5% CO2 and passaged when approaching confluence using

methods described below. The H1 stem cell line was frozen down for future storage and re-plating in liquid nitrogen. The H1 cell

line was authenticated for identity through concordance analyses from genotypes sequenced using the Infinium GSA-24 v3.0 in

house compared with a reference genotype fromWiCell. Genotypes are ascertained every few cell line expansions to confirm donor

identity.

METHOD DETAILS

Procurement of frontal cortex brain biopsies
Biopsies were taken at the site where the shunt would penetrate the brain. Three cylindrical biopsies were taken approximately 2mm

in diameter and 3-10mm in length using a disposable Temno Evolution TT146 (Merit Medical Systems) biopsy tool. The insertion point

of the catheter was approximately 3 cm from the midline and anterior to the coronal suture.90 Biopsies were immediately frozen with

liquid nitrogen and stored at -80�C. One biopsy was sent for histopathological staining using the 6F3D and AT8 antibodies and eval-

uated by a neuropathologist for presence of Ab plaques and tau tangles via light microscopy.91 Biopsy Ab plaques burdenwas further

assessed semiquantitatively by a neuropathologist (T.R.) under light microscopy and assigned to mild (1), moderate (2), or severe

amyloid burden (3) as described previously.92 Our initial cohort included 58 individuals. We excluded one individual with tau-only pa-

thology and another patient with a history of psychosis. We excluded four additional individuals (2 Ab-free and 2 Ab+) that, upon

microscopic inspection of Nissl stained cryosections (see the biopsy tissue quality scoringmethods), displayed decidedly poor tissue

quality and a very high ratio of white matter to cortical matter. All of these excluded biopsies were more than 85%white matter tracts

with the diminished cortical regions showing dysmorphic neuronal profiles.

Neuroanatomical localization of biopsy site
The stereotactic position (distances in millimeters) was measured from anatomically linked planes (transverse, sagittal, coronal) in a

multiplanar reconstruction (MPR) produced from the postoperative CT/MRI DICOM image. After planar alignment (transverse and

sagittal planes to themidline, and coronal plane in a 90-degree angle to the planum sphenoidale), the biopsy location was determined

to be at proximal catheter’s cortex entry site at the catheter’s midline. Following distances were measured: In the transverse plane

from the midline to the biopsy location (x). In the sagittal plane from the frontal bone’s internal cortex to the biopsy location’s coronal

axis (at 90-degree angle) (y). In the sagittal plane, distance from the planum sphenoidale to the biopsy location’s transverse axis (at

90-degree angle) (z). EBRAINS Siibra-explorer was used to map and visualize each biopsy position.93–95

Biopsy tissue quality scoring
To ascertain tissue quality measurements (range from 1-10), we performed Nissl staining followed by semi-quantitative scoring of

each biopsy slide image. For Nissl staining, briefly, fresh frozen tissue was thermally equilibrated to -20�C in a cryostat (Leica

CM3050S) for 20 minutes. Tissue was mounted onto a cryostat chuck with Optimal Cutting Temperature compound (O.C.T. com-

pound), aligned at a 5� cutting angle, and sectioned at 10 mm in thickness per tissue slice. Using a Superfrost plus slide that has

been pre-cooled to -20oC, the tissue section was collected by carefully placing it and gently flattening it with the brush on top of

the slide. Subsequently, slides were stained with 0.1% Cresyl Violet acetate in DiH2O, destained with ethanol, and 100% Xylene

for 5minutes. Slides weremounted by adding 2-3 drops of Permount around the tissue and coverslipped. Imageswere subsequently

collected using a Keyence BZ-X810 series All-in-one Fluorescence microscope. With BZ-X800 viewer software, each stained slide

was imaged on the Brightfield/Phase contrast channel using a 20X objective. The stained region of interest was selected by spec-

ifying the XY positions of the tissue outer edges and adjusting the Z-stack function to auto-focus prior to each image capture. The

stitching of captured image series was made with BZ-X800 analyzer software. The images are exported as Big TIFF files and edited

for cropping, contrast, and brightness with Photoshop software.

Measurement of iNPH grading scale and clinical diagnosis
Severity of idiopathic normal pressure hydrocephalus (iNPH) symptoms was evaluated using the iNPH grading scale (iNPHGS),96 a

clinician-rated scale that aims to assess the hallmark triad of the disease. Inversely correlated with the severity of the disease, the

12-point iNPHGS has been shown to be clinically meaningful down to a single point.96 Longitudinal clinical information on our cohort

of 52 individuals was obtained by following up patients until death (n=23) or April 2023 with a median of 5 years.

Generation of single-nuclei suspensions from frozen brain biopsies
Fresh-frozen brain biopsy tissue was cryosectioned at -15 to -20�C into 60-micron sections. Following microdissection, samples

were placed on dry ice until nuclei isolation. To each cryosectioned sample, 1mL of Extraction Buffer (ExB) was added into a

1.5mL Eppendorf tube. Samples were briefly triturated before being placed in a six-well plate. Samples were then triturated 20 times

with the ExB, every 2 minutes, until no large chunks of tissue were observed in each well. After the last trituration, samples were
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diluted with 45-50mL of wash buffer in a 50mL Falcon tube, and then split into four 13-15mL solutions in 50mL Falcon tubes. The

diluted samples were then spun at 500g for 10 minutes at 4�C (pre-cooled) in a swing bucket benchtop centrifuge.

After centrifugation, a visible nuclei pellet was observed. Sampleswere then removed very gently from the centrifuge, and placed in

an ice bucket. The supernatant was aspirated until therewas barely any liquid observed on top of the pellet (50-100mL of liquid left). To

aspirate without disturbing the pellet, a serological pipette was first used till about 1mL was remaining, followed by serial aspiration

with a P2000 and P200 pipette.

The pellets were then resuspended in 250mL of wash buffer (WB), mixed thoroughly by trituration and placed in an Eppendorf

1.5mL tube.

Single-nucleus and single-cell RNA-sequencing and read pre-processing
For all single-nuclei experiments, the 10X Genomics (v3) kit was used according to the manufacturer’s protocol recommendations.

Library preparation was performed according to the manufacturer’s recommendation. Libraries were pooled and sequenced on

either a NovaSeq S2 or S4.

Sequencing reads from human brain biopsy experiments were demultiplexed and aligned to the hg19 reference using

DropSeqTools (https://github.com/broadinstitute/Drop-seq) with the default settings. To reduce background noise from ambient

RNA and potential UMI barcode swaps, we used Cellbender remove-background v297 with the default applied settings to all libraries.

The Cellbender-corrected reads were used for downstream variable gene selection, dimensionality reduction, clustering, and differ-

ential expression. Cellbender was also used to distinguish cells from empty droplets.

Initial clustering of the biopsy cohort
Pre-processed Cellbender-corrected digital expression matrices were loaded into R per library as a digital gene expression matrix.

All matrices were combined per individual and an initial variable gene selection was performed. A low-dimensional embedding was

generated via rliger v1.0 at a k = 45 and lambda = 5. Following integrative non-negativematrix factorization,18 a shared nearest neigh-

bors graph was generated and individual nuclei profiles were clustered according to the SLM (smart local moving) algorithm to iden-

tify broad cell classes. We used a recent large-scale survey of postmortem human brain21 to identify cell class markers and merged

each cluster into one of eight cell classes (excitatory neurons, inhibitory neurons, astrocytes, microglia/macrophages, oligodendro-

cytes, oligodendrocyte precursor cells, endothelial cells/pericytes, and peripheral blood mononuclear cells (PBMCs)). PBMCs were

excluded from downstream analysis.

For each cell class, individual nuclei were subsetted and the above clustering processwas repeated to identify individual cell types.

Marker genes were identified for neuronal populations based on a large-scale survey of neurons in the human neocortex.21 Further, a

recent survey of microglia/macrophage in the murine brain was used to identify cell type markers for microglia and macrophages.80

For other non-neuronal types, we performed the Wilcoxon rank-sum test on SLM-defined cell clusters to find markers and thereby

determine cell type annotations. We removed doublets identified as clusters that expressedmarkers of more than one cell class pop-

ulation. We also removed clusters whose markers contained high numbers of mitochondrial genes or heat shock related proteins.

Integrative analysis of the biopsy dataset with postmortem studies
We collected and uniformly processed all publicly available metadata on each dataset including the donor information (e.g., age, sex,

diagnosis), sample information (e.g., brain region, sequencing protocol, batch structure), cell type identities, and quality metrics. All

gene identifiers were mapped to Ensembl gene id. For mouse datasets, we further mapped Ensembl gene ids to their human ortho-

logs.98 However, we did retain non-orthologous mouse genes for normalization. We calculated the following quality metrics for every

cell in each dataset: number of unique genes (nGene) and number of uniquemolecular identifiers (nUMI), percentage ofmitochondrial

genes (MT%), percentage of ribosomal genes (Ribo%), percentage of non-coding lncRNAs (lncRNA%), and percentage of dissoci-

ation-related artifacts%.20 We used nGene and MT% quality metrics as our initial criteria to select cells for our integrative analyses

and used the other quality metrics to identify and remove low quality cell clusters from the integrative analysis results. We retained

cells with nGene >500 andMT%<5. For microglia cells, we used nGene >200 for two studies4,40 to compensate for the lower number

of unique genes compared to other cell types. We further used the nGene >200 threshold for all cell classes in Mathys et al. dataset.3

Finally, we removed donors with less than 50 cells within each cell class. Our integrative analyses across the seven cell classes

included a total of 2,406,980 high quality cell profiles across 36 datasets from 28 studies on humans and mice. Distributions of

the quality metrics are included in Figures 1C and S1E. See data and code availability section for information about availability of

the integrative analysis.

We performed our integrative analysis of each cell class individually to maximize the accuracy of cell state mapping across data-

sets. The seven major cell classes were: excitatory neurons (ExN), inhibitory neurons (InN), astrocytes (Astro), microglia/macro-

phages (Micro), oligodendrocytes (Oligo), Oligodendrocyte progenitor cells (OPC), and endothelial/pericyte cells (Endo). For Inhibi-

tory and excitatory neurons, we limited our analysis to cortex brain region. However, glial cells were represented from across the

brain regions. Table S1 summarizes the datasets that are included in integrative analysis of each of the seven cell classes. As outlined

below, we developed a multi-step framework to efficiently handle substantial biological and technical variation that exists among the

single-cell and single-nucleus datasets.
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Selecting highly variable genes

We reasoned that the influence of batch effects on the cell embedding space would be minimized by selection of genes that recur-

rently show high variability across the human and mouse datasets. To achieve this, we implemented the following method: 1) Select

the top 2000 variable genes within each donor of each dataset by the vst method in Seurat.99 2) Weight the selected genes in each

donor so that the sum of the weights for each dataset add up to one. 3) Calculate an aggregate score for each gene by summing up

their weighted scores. This procedure aims to minimize the participation of genes that show between dataset variability (hence likely

influenced by batch effects) in the follow up analysis of cell embedding construction and clustering.

Principal component analysis

To remove donor-specific batch effects (e.g., due to pre and post-mortem effects, sample preparation, and sequencing settings), we

performed scaling (i.e., mean of zero and unit variance) of transcriptome data per gene and per donor and used this scaled data for

principal component analysis. Comparison of different integrative solutions indicated the better quality after removal of donor spe-

cific effects. For all seven cell class analyses, we used the top 30 principal components, weighted by their variance explained.

Batch effect removal

We used Harmony v1.0100 to remove batch effects from the PCs with donor id and organism specified as the main source of batch

effects. The default theta and lambda parameters were used for all analyses, except for the Endo cells with the theta parameter

of four.

Assessing the quality integration solutions

To assess the quality of the results, we developed multiple ‘‘cluster-free’’ quality metrics enabling us to perform a systematic and

unbiased comparison of the solutions that is independent of the clustering method. These metrics can be grouped into three

main categories. First, we required a uniform distribution of the datasets in the Uniform Manifold Approximation and Projection

(UMAP) space. In addition to visual inspection, we developed a method that allowed us to do a quantitative evaluation of dataset

distributions. Briefly, each of the two UMAP coordinates are split to 100 units, providing 10,000 bins. Within each bin a hypergeo-

metric test is performed to assess whether or not cells from a specific dataset are over-represented. This analysis is performed

for each dataset from each integrative solution (the related R functions and visualizations are provided at https://braincelldata.

org/resource). Second, we examined whether cells expressing known cortical cell type markers are aligned with each other across

datasets and organisms. To systematically test this, we repurposed the commonly used feature plot visualizations to represent do-

nors instead of individual cells, thereby bypassing the effect of sample size variation between donors and datasets. Finally, we as-

sessed if the initial clustering structure of each dataset is preserved in the aligned space. For this analysis, we used the reported clus-

tering structure for each of the datasets individually. We also constructed confusion matrices to compare the cluster annotations

between datasets (see the linked website for more details).

Cluster quality analysis

On each cell class integrative analysis we performed Leiden clustering using the Seurat package99 with clustering resolutions of 0.6

or 0.8. We next used our calculated cell-based quality metrics (nGene, nUMI, MT%, Ribo%, lncRNA%, and %expression of disso-

ciation-related artifacts) to identify and remove low quality clusters.We also performedmarker analysis of each cluster per each data-

set using FindAllMarkers() function in Seurat to identify and remove doublet clusters.

Uniform annotation of the datasets

Wemodified a previously developed randomwalk algorithm101 to transfer cell type annotations from the biopsy dataset to each of 35

datasets (27 studies) in the aligned space, thereby uniformly annotating all datasets with cluster labels from the biopsy cohort. We

next checked the consistency of cell type proportions among datasets and expression of marker genes across datasets and clusters

(Table S2; See the linked website for more details).

Cell type marker analysis
Marker genes were identified in each dataset by running the ‘FindAllMarkers’ function in Seurat.99 Significant genes (FDR-adjusted p

value < 0.1) with min.diff.pct of 0.1 were considered as markers. The heatmap in Figure 4A based on a select number of microglia

markers based on the existing knowledge onmicroglia states and function. The full organizedmarker results are provided in Table S2.

To assess an overlap between cell state markers and DE genes in the microglia analysis (Figure 4D), we retained the top 100 up-

regulated markers (FDR-adjusted p value < 0.01; sorted by p value) that were markers with log fold-change (logFC) >0 in less than a

third of the cell states. This additional criterion was added to avoid spurious overlap of markers in non-homeostatic microglia that

were driven by the large size of the homeostatic microglia.

Differential abundance analysis
In our integrative analysis, a major analytic challenge was the wide variation in cell class compositions among the analyzed datasets.

As an illustration, both of human PD datasets, one of human AD datasets, and all of mouse AD datasets included only glial cells and

not neuronal cells from cortex. To address this, we conducted our meta-analysis of cell type proportional changes within each cell

class separately. For ourmeta-analysis of early AD pathology, we included three out of 6 ADpostmortem cohorts from the frontal lobe

(more specifically prefrontal cortex or superior frontal gyrus).3,4,6 We excluded one cohort72 due to overlap of individuals with another

included cohort,3 and two that lacked sufficient numbers of early AD stage subjects.5,7We further included two PD postmortem data-

sets,49,50 one ASD dataset51 and one MS dataset52 as contrast groups in our analyses.
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We used a logistic mixed-effect model102 to identify differentially abundant cell populations in each dataset separately (Table S3).

For all human datasets, we included sex as a fixed effect, and individual as a random effect in the model. We then tested the signif-

icance of association between the status with the clusters using a Wald test. For assessing cell type abundance associations with

iNPH grading scales, we modified the method to allow for continuous independent variables, while preserving the Wald test for as-

signing significance.

We performed ameta-analysis of cell type abundance results across four cohorts with designations for earlier and later AD stages:

(1) the biopsy cohort (Ab+ as early and Ab+Tau+ as late; all cell classes), (2) Mathys et al. (Braak III-IV as early and Braak V-VI as late;

all cell classes except endothelial cells), (3) Leng et al. (Braak III-IV as early and Braak V-VI as late; all cell classes) and (4) Gerrits et al.

(CtrlPlus as early and AD as late). The p values from individual analyses were combined together via the Stouffer’s method, with an

additional consideration of the directionality of the change as determined via the odds ratio assessment from the Wald test. All

Stouffer’s p values were subsequently corrected for multiple hypothesis testing via the Benjamini-Hochberg correction.

To determine the relative cellular abundance changes at the cell class level we generated p values by comparing proportions of the

seven cell classes by aWilcoxon rank-sum test. Meta-analysis p values (and Z scores) were generated using Stouffer’s method, tak-

ing into account the directionality of the abundance change (Figure S2F).

For mouse datasets, we used Fisher’s exact test to examine expansion and loss of different microglia cell types and states

(Table S3). The p values were subsequently corrected for multiple hypothesis testing using the Benjamini-Hochberg procedure.

For visualization purposes, Z scores were calculated by transformation of the p values and signed by the directionality of the log

odds ratio.

Differential gene expression analysis
We employed a pseudocell strategy coupled with mixed linear models and jack-knifing to robustly identify differentially expressed

genes. To construct pseudocells, we aggregated the raw UMI count of, on average, every 30 cells per subject and cell type. We con-

structed one pseudocell for cell types that had between 15 to 45 cells in a donor and excluded cell types that had less than 15 cells.

Pseudocell-based analysis reduces the impact of dropout and technical variability, while ameliorating low statistical power and high

variation in sample size issues attributed to the pseudobulk approaches.103 We used the Limma Trend104 approach with robust

moderated t-statistic to identify DE genes within each cell class with sex, cell type, log2(pseudocell MT%) and log2(pseudocell

nUMI) as covariates and subject id as a random effect. Cell type annotation was included as a covariate to account for the cell

type-specific baseline expression of the genes and therefore to ameliorate the impact of cell type proportion on the DE patterns.

We further performed jack-knife resampling at two levels to identify robust DE genes that are shared among the majority of indi-

viduals. First, iterating on each of the 52 individuals in the biopsy cohort, we excluded one subject from the analysis of each cell class

and then re-calculated the DE statistic for the remaining 51 individuals, retaining the maximum p value (i.e., the least significant

p value) achieved for each gene. An FDR-adjusted jack-knife p value was next calculated for genes with FDR-adjusted p value < 0.1

in the main analysis using the Benjamini-Hochberg correction. Second, iterating 50 times, we randomly sampled 50% of cohort sub-

jects (balanced by their pathological status) and re-calculated the logFC patterns. A consistency score was defined for each gene as

the fraction of iterations in which the jack-knifed logFCs were consistent with the logFC pattern from the full cohort of 52 individuals

(i.e., up- or down-regulated in both). Genes with FDR-adjusted jack-knife p value < 0.01 and jack-knifed consistency score R0.9

were deemed as significant. Comparison of the DE patterns with a pseudobulk approach using LimmaTrend indicated highly consis-

tent (>99%) logFC patterns between the pseudobulk and our pseudocell strategy for the DE genes. We also found majority of iden-

tified DE gens by pseudocell approach remain significant (median >72%per cell class; pseudobulk FDR-adjusted p value < 0.1) in the

pseudobulk approach, while the identified DEgenes by our pseudocell approach showmuch less sensitivity to variation in cohort size

(data not shown).

To compare the DE genes between Ab+ and Ab+Tau+ individuals (Figure 2D), we performed a paired t-test based on values from

below equation:

signðlogFCðAb + Þ � logFCðAb + Tau + ÞÞ � signðlogFCðAb + Tau + ÞÞ � ½logFCðAb + Tau + Þ � logFCðAb + Þ�
This equation will be positive only if the logFC from both Ab+ and Ab+Tau+ are in the same direction (i.e., gene is up or down regu-

lated in both conditions) and are stronger in Ab+Tau+ and negative otherwise.We excluded from this analysis cell types with less than

20 DE genes in either Ab+ and Ab+Tau+ conditions as they usually were small and their fold change patterns were not reliable. We

used a paired t-test to determine if the outputs of this function are randomly distributed around zero or are biased towards positive

(i.e., consistent but stronger logFC in Ab+Tau+) or negative (i.e., discordant or stronger in Ab+) values.

Gene set enrichment analysis
DE genes were filtered to protein-coding based on the gene biotype information from the ‘EnsDb.Hsapiens.v86’ package in R Bio-

conductor. Genes were next ordered based on their t-statistic from LimmaTrend mixed linear models. Curated GO Biological Pro-

cess, KEGG and Reactome gene sets were retrieved from the EnrichR portal.105 To identify enriched pathways, we ran the fGSEA

package106 v1.16.0 with default setting while limiting the geneset sizes between 15 and 250 genes. For each cell class and cell type

analysis, protein-coding genes expressed in more than one percent of cells in the corresponding group were used as background.
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Correlating cell-type-proportional changes to transcriptome responses across cell types
To identify correlation between cell type abundances and transcriptional phenotypes, we used a logistic mixed-effect model.102 Spe-

cifically, we constructed a meta-gene (referred to as DE signature in the main text) from the top 300 upregulated protein-coding

genes (sorted by their jack-knifed p value) in each individual cell by aggregating their corresponding UMI counts, as proposed

before.107 The meta-gene was next normalized over the total nUMI count of the cells and standardized to have a mean of zero

and variance of one across cells from all subjects in our cohort. We then binarized cells as active or inactive for a meta gene based

on a standardized score threshold of 2. In our analyses we required presence of at least two subjects with more than 3% transcrip-

tionally active cells in each cell type and status category. For cell types that do notmeet this criterion we set the association p value to

one to indicate transcriptional changes in the corresponding cell type are not associated with the interested cell type fractional vari-

ation. Finally, we fit a logistic mixed-effect model on the binarized scores to examine their association with the normalized cell type

proportional changes with sex as a covariate and subject as a random effect. The cell type proportions were normalized by applying

an empirical cumulative estimation using the ecdf() function in R.We used cell-class level DE genes to construct meta-genes since: 1)

cell class level DE genes were highly conserved within cell types (Figure S2G); 2) DE genes were not driven by the variation in the cell

counts of the cell types. As summarized below, we performed robustness analysis and alternative meta-gene construction schemes

to further confirm the observed associations.

First, to assess the robustness of the results, we tested the sensitivity of the results to the presence of technical variation in cell

gene counts by, iterating 30 times, adding Poisson noise to the transcriptome data of each individual cell before calculation of the

meta-gene expressions (Figure S3B). In addition, iterating 30 times we randomly down sampled the cell types to examine the asso-

ciation of the cell type sizes on the results (Figure S3C).

Second, as an alternative analysis method to support our findings (Figure S3D), we constructed meta-genes through principal

component analysis of the normalized and scaled expression of the top 300 upregulated protein-coding genes (sorted based on

jack-knifed p values). Similar to the WGCNA approach,108 the first principal component was chosen as the meta-gene. The meta-

gene scores were then binarized as above and the association with cell type proportional changes were examined using a logistic

mixed-effects model similar to above.

Heritability enrichment of differentially expressed genes with MAGMA
We used MAGMA43 to determine the degree of enrichment of common variant risk in the list of differentially expressed genes across

cell types. We first downloaded the summary statistics from a recent common variant meta-analysis of AD and related dementias,36

PD,109 and ASD.110 Using the online FUMA tool,111 we generated Z scores for each gene, corresponding to the approximate degree

of association between the gene and AD (SNP2GENE function). To determine gene sets for each cell class, we took the top 200 differ-

entially expressed genes between biopsy samples with AD pathology versus those samples without, ordered by t-statistic at a sig-

nificance value of p < 0.2 (to ensure enough genes were being captured per gene set). Significance values for the gene set of interest

were calculated via MAGMA, wherein a regression is fit to determine whether those genes with membership for that set have a sig-

nificant enrichment for heritable risk of the trait of interest.

Brain slice preparation for electrophysiological experiments
Brain biopsies were collected from the right frontal lobe from a standard insertion site (mid pupillary line, 2 mm anterior to the coronal

suture representing Brodmann area 8) before insertion of the intraventricular catheter for cerebro-spinal fluid (CSF) shunt as

described previously.13,90 A pyramid/rectangular shaped right lobe cortical biopsy of around 3 mm in edge was extracted by sharp

cut of a knife and gently lifted and placed into a sterile 50mL falcon tube containing ice-cold, sterile filtered, N-methyl-D-glucamine

(NMDG)-based artificial CSF solution (aCSF; see below for composition).112 The brain biopsies were brought to the neurophysiology

laboratory within 15 to 20 minutes from excision. Brain biopsies were gently cleaned of any debris or blood clots by careful trituration

with a large bore fire polished glass Pasteur pipette, photographed for sample size documentation and were then embedded in 2%

lowmelting point agarose (SeaPlaque, LonzaUSA) and sliced (350 mm) using a vibratome (Campden Instruments, model 7000 smz) in

chilled (2-4 �C), fully carbogenated (95%/5%, O2/CO2) aCSF of the following composition (in mM): 92 NMDG-methyl-D-Glucamine,

2.5 KCl, 20 HEPES, 25 NaHCO3, 1.25 NaH2PO4, 3 Na-Pyruvate, 2 Thiourea, 5 Na-Ascorbate, 7 MgCl2, 0.5 CaCl2, 25 Glucose (pH

adjusted to 7.3 with HCl 10 M). We routinely discarded the first and last slice (extremities of sample) obtained and only twomid-sam-

ple mini slices (total area of 6-10 mm2) from each biopsy were included in our study for functional examination. After cutting, slices

were photographed once again andwere then placed in a custom-made chamber and allowed first to recover at 34 �C for 45minutes

in the recording solution (see below for composition, supplemented with 3 mM Na-Pyruvate, 2 mM Thiourea and 5 mM Na-

Ascorbate) and then for another 60 minutes in the same solution at room temperature (20-22�C) before use for electrophysiology.

3D-multielectrode array electrophysiology
A single slice (350 mm) was transferred and securedwith a slice anchor in the chamber of a 60-3D-multielectrode recording array (3D-

MEA, Multichannel Systems [MCS]) with an 8x8 configuration of pyramidal electrodes bearing titanium nitride (TiN) tips (impedance

150-300 KOhm) and silicon nitride isolation. Pyramidal electrodes had a height of 100 mm but were conducting only on top 20 mm of

the tip which measured 12 mm in base. Recordings were made with a MEA2100-Mini headstage (MCS, Germany) Slices were contin-

uously perfused at a rate of 3-3.5 mL/min with a recording solution of the following composition (in mM): 120 NaCl, 2.5 KCl, 25
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NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 25 Glucose. Slices were allowed at least 30 minutes of settling time in the MEA chamber

before any recordings or pharmacology was attempted. Drugs (NMDA, 200 mM for 2 minutes, Sigma-Aldrich) were bath applied by

continuous perfusion via a peristaltic pump. Electrophysiological data were band passed between 1 and 3500Hz (second order But-

terworth filter) and were captured at 20 KHz via MCS-IFB 3.0 multiboot (MCS, Germany) to a personal computer, displayed in MCS

Experimenter software (version 2.15) and stored to disk for further analysis.

3D-MEA data analysis
NPH brain biopsies were selected for neurophysiological analysis after careful consideration of experimental notes, biopsy docu-

mentation images at the time of recording & Nissl staining to ascertain the preservation of pia to L4-L5 cortical layers. Multielectrode

recording data files (.msrd) were imported in Neuroexplorer (Nex Technologies, US) and opened in Neuroexplorer (Nex Technologies)

or MATLAB (The MathWorks) for filtering, down-sampling, measurement routines and analysis with custom scripts (python,

MATLAB). Multichannel signals were analyzed for spike activity based on their cortical depth (L2/3: 300-1250 mm; L5:

>=1500 mm;). Spike detection of multiunit activity (MUA) was performed from drug responding, channels of interest (COIs). Reference

channel noise was subtracted from eachCOI before applying a 300-3500Hz band-pass filter (3rd order, Butterworth) to the raw signal

followed by a spike detection threshold set at -5.5 times the standard deviation (SD) of the baseline of each COI. Electrodes qualified

for analysis if they responded to NMDA drug superfusion with an increase in firing (excitation) consisting of aminimum of two consec-

utive 10s binned frequency peaks above 0.1Hz and amean firing rate during NMDA application of more than 0.05 Hz. Extracted spike

timestamps were stored in a file and were used to compute interspike intervals (ISI) & spike bursting characteristics for each COI

during pharmacological experiments with NMDA. For burst detection, we used an interval-based algorithm to detect and quantify

the characteristics of bursting induced by NMDA superfusion. We defined a cortical burst by a minimum of two spikes occurring

within 10 ms of each other (minimum burst start with instantaneous doublet frequency of > 100 Hz)113,114 with burst terminating

only if the forthcoming spike occurred more than 20 ms after the last (termination instantaneous frequency of < 50Hz), while any

two consecutive bursts had to be separated by a minimum of 25 ms from each other (minimum interburst interval).

Histological determinations and immunohistochemistry
A single, 350 mm, biopsy slice (3D-60MEA recorded) was fixed in fresh 4% PFA for 24-72 hours at 4�C and then stored in Phosphate

Buffer (PB) containing 30% sucrose for 24 hours at 4�C for cryoprotection. Slices were then resliced into 20 mm sections at -20�C
using a cryostat (Leica CM1950, Leica Biosystems, Germany) and were collected on frost slides for 0-amyloid staining. We used

a standard citrate buffer antigen retrieval protocol (with 10 mM sodium citrate) prior to overnight incubation of slices with W0-2 pri-

mary antibody (MABN10, Millipore, dilution 1:1000, at room temperature) followed by a two hour incubation with an anti-mouse fluo-

rescent secondary antibody (Alexa Fluor Goat-anti-mouse 568, A11004, Thermo Fischer Scientific, dilution 1:500) for 0-amyloid

detection. NPH biopsy slices were imaged with LEICA thunder imager 3D tissue slide scanner (Cell and Tissue Imaging Unit,

UEF) and the quantification of 0-amyloid burden was conducted in ImageJ. Regions of interest (ROIs) were drawn to outline the sam-

ple sections and 0-amyloid burden was quantified by measuring the fluorescence intensity and area coverage fraction (intensity per

mm2) of theWO2 staining inside each ROIs. Acquired images were first turned into 8-bit images, thresholded to minimum value of 30

and normalized to amaximum value of 120. Following the quantification of Ab burden, the 16 Ab+ biopsy specimenswere divided into

two equal-sized groups. Eight specimens were categorized as Low Ab+, while the remaining eight were classified as High Ab+.

Generation of a doxycycline-inducible SOX10 H1 stem cell line
We adapted a recently-published protocol to produce mature oligodendrocytes from the H1 embryonic stem cell precursors cell

line.115 First, we isolated and incorporated a SOX10 transcription factor (Addgene #115242) into the backbone of a doxycycline-

inducible cassette (Addgene #105840) to generate pBR01.

H1 ESCs were plated in Matrigel (cat. #47743-716)-coated (30-minute incubation at 37�C prior to cell plating) plates in mTesR1

(cat. #85857) with supplements (ESC media, StemCell Technologies cat. #85857) and RevitaCell (cat. #A2644501). After plating,

we performed daily media changes with ESCmedia without RevitaCell until plates were approximately 80% confluent with compact

colonies. For routine passaging, ESCs were washed 1X with PBS (cat. #10010049) and incubated in Versene (cat. #BE17-711E) for

5mins at room temperature, after which Versenewas gently aspirated from the plate and replacedwith ESCmedia. ESCswere gently

dissociated into a cell suspension using a manual cell scraper and transferred as small colonies to a fresh Matrigel-coated plate at a

1:20 dilution. In order to generate a doxycycline-inducible SOX10 cell line, we performed TALEN-based integration as has been pre-

viously described.116 Briefly, we electroporated (1050V, 50ms pulse, two pulses total) 1 million ESCswith 4 mg pBR01, 2 mg TALEN-L

(Addgene #59025), 2 mg TALEN-R (Addgene #59026), and 0.4 mg Bcl-XL (Addgene #8790) plasmids using a Neon Transfection Sys-

temPipette Station (Thermo Fisher). After 96 hours, cells were incubatedwith 2 mg/mL puromycin (cat. #A1113803) for 72 hours. After

puromycin selection, polyclonal ESCs were expanded and stored in liquid nitrogen at 106 cells/mL in 10% DMSO + mTesR1.

Oligodendrocyte differentiation of ESCs
To differentiate the resulting cell line into mature oligodendrocyte lineage cells, we adapted the Garcia-Leon protocol with minor

modifications.115 Briefly, we used the H1 embryonic stem cell line with the integrated SOX10 cassette to generate neural progenitor

cells which were subsequently differentiated into mature oligodendrocytes. Vials containing 1 million ESC precursors were thawed
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and plated into onewell of aMatrigel-coated 6-well plate, supplementing the cells with RevitaCell to increase vitality. These cells were

then allowed to grow to confluence with supplementation of 1mL E8media (cat. #A2858501). Confluent cells were subsequently split

with the following procedure. First, cells were washed with 1mL of Dulbecco’s PBS per well. Then, cells were subsequently treated

with 1mL of ReleSR (cat. #05872) incubated at 37�C for five minutes. Cells were then spun down and split at a ratio of 1:14 into Ma-

trigel-coated 6-well plates and grown in 1mL of E8 media (cat. #A2858501) supplemented with 1x RevitaCell solution. The cells were

transitioned to mTeSR1 media by replacing with a 1:1 E8 to mTeSR1 solution on the first day, 75% mTeSR1 with 25% E8 on the

second day, and a full 1mL of 100%mTeSR1 on the third day. Cells were then allowed to grow to confluence before being split again

with 1mL ReleSR as above. The cells were replated onto 6-well matrigel-coated plates, supplemented with RevitaCell. An N2B27

media was made by mixing non-essential amino acid MEM (cat. #11140-050), 2-mercaptoethanol (cat. #21985023), N2 (cat.

#17502048) and B27 (cat. #12587010) to 13 concentration plus insulin (cat. #I9278) at 25 mg/mL final concentration to Dulbecco’s

modified essential media. The cells were then grown in 2mL of the pre-made N2B27medium supplemented with 0.1 mM retinoic acid

(RA, cat. #R2625), 10 mMSB431542 (cat. #04-0010-10) and 1 mMLDN193189 (cat. #04-0074) for five days and an additional two days

with 10 mM of smoothened agonist (SAG, cat. #566660).

After cells achieved confluence, they were passaged using a pre-warmed 1mL aliquot of Accutase (cat. #A1110501) for

1-2 minutes. The cells were seeded onto 6-well plates coated with poly-l-ornithine (cat. #P3655) and laminin (cat. #L2020-1MG)-

coated plates at a density of 10,000 cells per square centimeter. The cells were fed a differentiation medium supplemented with

2 mg/mL of doxycycline (cat. #D9891-10G) to induce expression of SOX10 and allowed to grow for 10 days, at which time they

are mature.

Neuronal differentiation of ESCs
Neuronal differentiation of ESCs into cortical glutamatergic neurons was carried out as previously described.117 In brief, the differ-

entiation was carried out by adding doxycycline hyclate (2 mg/mL) to N2 supplemented media (Thermo Fisher, 17502048) with

patterning factors SB431542 (Tocris, 1614, 10 mM), XAV939 (Stemgent, 04-00046, 2 mM) and LDN-193189 (Stemgent, 04-0074,

100 nM), as described previously.117–119 Puromycin selection was used (5mg/mL), from days 2 to 6 to remove non-transduced cells.

At 4 days post induction, neuronal cells were resuspended into Neurobasal media (Gibco, 21103049) that was supplemented with

B27 (Gibco, 17504044, 50X), doxycycline (2 mg/mL), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CTNF), and

glial cell-derived neurotrophic factor (GDNF) (R&DSystems 248-BD/CF, 257-33 NT/CF, and 212-GD/CF at 10 ng/mL each). From this

point onwards the neurons were either co-cultured withmurine glial cells that were derived from early postnatal (P1-P3) mouse brains

as described previously120 or were left to grow as monocultures (mouse strain https://www.jax.org/strain/100012; animal ethical

committee approval by Harvard University: Animal Experimentation Protocol (AEP) # 93-15).

Immunohistochemistry and imaging of ESCs
We performed immunohistochemistry on ESC-derived oligodendrocytes at 1, 5, and 10 days after doxycycline-based SOX10 induc-

tion. Briefly, cells were grown on a 6-well plate and fixed using 2% PFA and then permeabilized using Triton-X (cat.# T9284-1L), fol-

lowed bymultiple washes with 1x Dulbecco’s PBS at each step.We used the following primary antibodies for our immunohistochem-

istry experiments: anti-O4 (cat. #MAB1326), anti-MBP (cat. #AB9348), anti-NeuN (cat. #MAB377), and anti-PAX6 (cat. #AB78545).

The primary antibodies were diluted in a solution of 10% bovine serum albumin (BSA) in phosphate-buffered saline (PBS) supple-

mented with 1% Triton-X then added to the cells and allowed to incubate overnight at 4�C. Cells were then washed three times in

PBS. Finally, the secondary antibodies were diluted in a solution of 10% BSA in PBS supplemented with 1% Triton-X then added

to the cells and allowed to incubate for 1-2 hours at room temperature. After the secondary incubation, one to two drops of

ProLong Glass AntiFade Mountant with NucBlue (cat.# P36981) was added into the wells and coverslips were added on top of

each cell culture into wells for downstream imaging.

Imaging of immunohistochemical stains was performed on a Keyence BZ-800XE microscope with a Nikon Apo 20x objective. All

images were acquired using the same light emission settings and all channels were set to the same LUTs before quantification. For

quantification, we used CellProfiler’s IdentifyPrimaryObjects and MeasureObjectIntensity function to segment cells based on their

DAPI signal. Subsequently, the average fluorescence value (mean intensity value) was normalized per cell to the average fluores-

cence intensity of the DAPI signal. To determine the significance of an intensity difference, a linear mixed-effect model was used

to calculate the significance of a change in normalized intensity value across days of differentiation, treating each slice image as

a random effect. Significance values were determined via a likelihood ratio test against the null model not containing the day of

differentiation.

Generation of single-cell suspension from ESC-derived H1 iOligodendrocytes
To generate single-cell experiments, briefly we used oligodendrocytes at terminal differentiation (past day 8 post-doxycycline induc-

tion of SOX10). We isolated cells using the passaging protocol as mentioned above and measured cell concentrations in our isolate

using a hemocytometer.
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Read processing and clustering of iOligodendrocyte and iExcitatory Neuron scRNA-seq experiments
Sequencing reads from iOligo experiments were demultiplexed and aligned to the hg38 reference using CellRanger with default

setting using the command CellRanger mkfastq, followed by count generation using the command CellRanger count. Sequencing

reads from iExN experiments were demultiplexed and aligned to the hg38 reference using DropSeqTools with default setting.

To analyze single-cell RNA-sequencing data from ESC-derived oligodendrocytes and neurons we first determined highly variable

genes using LIGER.We further used non-negativematrix factorization (with k, number of factors, set to 20) to determine a low-dimen-

sion embedding followed by graph-based clustering using SLM.Marker geneswere identified by aWilcoxon rank-sumand cells were

annotated based on known markers of mature cell types as identified from our biopsy dataset.

ELISA-based amyloid beta quantification
To quantitate amyloid beta peptide levels from cell culture, we used the MesoScale Discovery V-Plex Plus Ab Peptide Panel 1 (6E10)

ELISA kit (cat. #K15200G). Briefly, we extracted 1.5mL of conditioned media per well replicate from isolates of ESC-derived oligo-

dendrocytes, neurons, andmicroglia. Isolates were stored at -80�C till the ELISA assay was run at which time they were brought up to

4�C before being spun down at 10,000rpm for 15 minutes. The MSD ELISA was run according to the manufacturer’s guidelines. Ab-

solute Ab peptide abundances were quantified using the MSD Discovery Workbench Analysis Software.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were two-tailed and were conducted in the R programming environment (v.4.0.4). A linear regression method was

used to test the association between Biopsy Ab burden and CSF Ab42 levels. A Student’s t-test was used to compare levels of phos-

phorylated tau and ELISA results between different groups of individuals. A logistic mixed-effect model with sex as covariate and

subject as random effect to assess the changes in cell type proportion in response to AD pathology and test the association between

changes in proportional changes in one cell type with differentially expressed genes in others. A Fisher’s exact test was used to test

for cell type proportional changes in the mouse microgla datasets due to experimental characteristics of these studies. The

Benjamini-Hochberg procedure was used to correct for multiple testing. The Limma Trend approach, a linear mixed model with

robust moderated t-statistics, was used to identify differentially expressed genes from log(count-per-milion + 1) normalized data

from pseudocells with sex, cell type, log2(pseudocell MT%) and log2(pseudocell nUMI) as covariates and the subjects as random

effects (using duplicateCorrelation() function from Limma). Pseudocells were constructed by aggregating the raw UMI counts of,

on average, every 30 cells from the same cell type and individual. We excluded genes expressed in less than one percent of cell types

from differential expression and GSEA analyses. For each cell type, subject-level logFC for Ab+ and Ab+Tau+ samples were calcu-

lated by applying the Limma Trend method to compare the expression across pseudocells from each subject to those from individ-

uals without AD histopathology. Within each dataset, cell type markers were identified through a Wilcoxon rank sum test using the

FindMarkers() function from Seurat. The robustness of identified differentially expressed genes was examined using a jackknife re-

sampling procedure. Differential expression patterns between Ab+ and Ab+Tau+ groups were compared using a paired t-test. GSEA

analysis was performed on protein-coding genes using the fGSEA package from Bioconductor that employs an adaptive multi-level

split Monte-Carlo scheme to estimate the significance of patterns in gene sets. Meta analyses were performed using Stouffer’s

method where Z scores were calculated from test statistic p values. The significance of overlaps between two gene sets was tested

using a Fisher’s exact test. No statistical tests were used to predetermine sample sizes. No randomization was performed in our

cohort assignment. Data analysis was not performed blind to the conditions of the experiments.
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Figure S1. Stereological positioning and neuropathological scoring of biopsy cohort samples, related to Figure 1

(A) Relative three-dimensional coordinates of biopsy positions based on the mapping of post-surgical CT or MRI images from 52 subjects. Samples are colored

by AD pathologic status.

(B) Representative images of biopsies with different Ab burden.

(C) Comparison of Ab burden based on our semi-quantitative microscopy-based approach with a quantitative method based on the percentage area coverage of

W0-2 staining for a biopsy cohort of 24 individuals.

(D) Assessing the effect of the number of sequenced cells on the fraction of each cell class. The biopsy samples from the 52 individuals were sequenced in 173

libraries. Each dot represents the fraction of identified cells from the corresponding cell class in one library.

(E) QCmetrics of human datasets parsed bymajor cell class.%MT, percent expression of genes per cell thatmap tomitochondrial genes, normalized by nUMI.%

dissociation artifact, percent expression of dissociation-related artifactual genes20 per cell and normalized by nUMI.

(F) Comparisons of some key microglia states between human and mouse datasets. Color indicates the number of human or mouse donors that support the

expression of the gene in a given UMAP coordinate across datasets. See also Table S2.
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Figure S2. Peri- and postmortem effects on gene expression patterns, related to Figures 1 and 2

(A) Impact of postmortem interval on the number of expressed transcripts (nUMI) per cell class. To assess significance within each postmortem dataset, a

regression line was fit to estimate the significance of association between postmortem interval (PMI) and the mean nUMI in each subject. For this analysis, we

considered three postmortem datasets of Lau et al., Mathys et al., and Velmeshev et al. that their postmortem interval information were available and had

sufficient range for a regression analysis. The p values from each dataset were next combined using Stouffer’s method. To calculate the nUMIs per cell, we

excluded the top 50 expressed genes in each dataset to better capture the impact of the postmortem intervals on the expression of the lower expressed genes.

The dashed line represents the p value cutoff threshold of 0.05.

(B) Impact of PMI on glial-to-neuronal gene expression ratio. Within each of three postmortem datasets, similar to (A), a regression line was fit to examine the

impact of the PMI on the mean ratio of glial-to-neuronal genes in each subject. The p values were next combined using Stouffer’s method. In each subject, the

(legend continued on next page)
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mean neuronal expression was calculated as the mean nUMI of excitatory and inhibitory neurons, excluding the top 50 expressed genes. The dashed line

represents the p value cutoff threshold of 0.05.

(C) Glial-to-neuronal gene expression ratio as a function of PMI in each of the three postmortem datasets.

(D) Comparison of glial-to-neuronal gene expression levels between the biopsy and four postmortem datasets. Glial expression in each dataset was normalized

to reduce the effect of the ambient RNA as measured by the expression level of the top 250 most specific markers of excitatory and inhibitory neurons. The

neuronal specific gene markers were identified based on the pct.1 � pct.2 difference in our biopsy dataset. As shown, this normalization resulted in overlay of

agonal state/postmortem scores for samples with a similar PMI across datasets.

(E) Dot plot of �log10-transformed FDR-adjusted p values from logistic mixed-effect model testing association of cell-type abundance with iNPH grading scale

(GS) (STAR Methods) subscore severity measured prior to shunt placement (precog, cognitive subscale; pregait, gait subscale; preurine, urine subscale; pre-

pooled, combined iNPH GS score).

(F) Z score frommeta-analysis of major cell class level differential abundance comparing late-stage samples (Braak V and VI and Ab+Tau+) versus pathology-free

samples (STAR Methods).

(G) Cell class level differentially expressed genes are preserved within cell types. Cell types are labeled in which less than 70% of cell class level DE genes were

preserved.
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Figure S3. Loss of NDNF-PROX1 inhibitory neurons is associated with an upregulation of excitatory neuron DE signature, related to Figure 3

(A) Distribution of Z scores per cell class for the analysis shown in Figure 3A. Each small line indicates one cell type and the tick lines represent the mean.

(B) Logistic mixed-effect model regression (STAR Methods) of NDNF-PROX1 proportion versus ExN cell-type transcriptional signature in Ab+ subjects with

added poisson noise. Poisson noise counts were added to the UMI counts of each gene in each cell prior to computing the regression. Boxplots show the

distribution of�log10 transformed p values over 30 noise iterations. Center line, median; box limits, upper and lower quartiles; whiskers, 1.53 interquartile range;

points, outliers.

(C) Logisticmixed-effect model regression of NDNF-PROX1 proportion versus ExN cell-type transcriptional signature in Ab+ subjects with downsampling of cells.

Iterating 30 times, we randomly downsampled each ExN type to 7,000 cells, unless the cell-type size was less than this number. Boxplots show the Z score

distributions over the 30 downsampling iterations. The dashed line indicates the FDR threshold of 0.05. Center line, median; box limits, upper and lower quartiles;

whiskers, 1.53 interquartile range; points, outliers.

(D) Association between NDNF-PROX1 loss and LINC00507-COL5A2 cell type assessed using an alternative strategy of constructing a meta gene of the ExN DE

signature from the first principal component (STAR Methods). Each small line indicates one cell type and the tick lines represent the mean.

(E) Logistic mixed-effect model regression of NDNF-PROX1 proportion versus ExN cell-type transcriptional signature in Ab+ subjects after randomizing

assignment of cells to excitatory cell types. Dashed line represents FDR threshold of 0.05.

(F and G) Logistic mixed-effect model regression (STAR Methods) of NDNF-PROX1 proportion versus ExN cell-type transcriptional signature in control (F) and

Ab+Tau+ (G) subjects. The inset boxplot in (F) shows the overall distribution of Z scores among the 17 excitatory neuron types. Dashed line represents FDR

threshold of 0.05.

(H) Boxplots representing the association (as measured by Z score from logistic mixed-effect model regression) between each inhibitory neuron cell type (x axis)

with the ExN DE signature across 17 ExN types (boxplots). The red dot represents the Z score of the LINC00507-COL5A2 type. Analysis is based on Ab+ in-

dividuals only. In boxplots, center line, median; box limits, upper and lower quartiles; whiskers, 1.53 interquartile range.

(I) Barplots representing the relative frequencies of the five astrocyte cell types.

(J) Dot plots showing expression of astrocyte marker genes in each astrocytic cell type.

(K) LogFC expression ofAPP,CDK5, andSNAP25 genes in LINC00507-COL5A2 excitatory neurons across increasing Ab burden scores. Each dot represents the

logFC in a sample with Ab pathology versus control samples. Regression line is illustrated in blue with associated standard error.
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Figure S4. Hyperactivity of L2/3 excitatory neurons in biopsy samples with low burden of Ab plaques, related to Figure 3

(A) Schematic representation of electrophysiology experimental design. Biopsy specimens were collected from an independent cohort of 26 individuals with

varying degrees of Ab pathology. Acute slices from the biopsies were then overlaid on 3D-multielectrode arrays and neuronal activity was measured after in-

duction of activity by NMDA treatment.

(B) Representation of spike burst activity of top three electrodes from L2/3 (top) and L5 (bottom) neurons of three individuals from control, low Ab, and high Ab

groups.

(C) Enrichment analysis of the 16 Ab+ biopsies where samples are ordered based on their quantified burden of Ab plaques. As illustrated, the trace analysis

indicates samples with low Ab+ burden are enriched for hyperactive L2/3 pyramidal neurons, consistent with Figure 3K (p value < 0.03). A hyperactivity Z score

was calculated for each biopsy sample by comparing their adjusted number of bursts per second to the corresponding distribution in control samples. Ab+

samples with Z score > 1.96 (p value < 0.025; one-sided) were marked as hyperactive. Number of bursts per seconds were adjusted across all samples by

regressing out the effect of age using a linear model. We observed similar patterns without this adjustment (data not shown).
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(legend on next page)
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Figure S5. Microglia responses to the accumulation of Ab and tau in cortical tissue, related to Figure 4

(A) Microglia cell state compositions across human and mouse datasets.

(B) UMAP representation of microglia integrative analysis where each cell is colored by its dataset of origin.

(C) Proportion of microglial states stratified by brain region.

(D) Marker expression consistency of previous human and mouse single-cell datasets with the biopsy dataset. Consistency score is defined as the fraction of

markers from human biopsy dataset for each microglia state that show a conserved up- or downregulation pattern in each dataset.

(E) The fraction of DE genes from the biopsy dataset between each pair of microglia states that have a conserved logFC pattern (e.g., up or down in both cell

states). DE genes were calculated by comparing Ab+/Ab+Tau+ samples with controls.

(F) Comparison of DE genes between GPNMB-LPL and CX3CR1microglia types in the biopsy dataset. The analysis is based on the union of top 300 DE genes in

each cell type to reduce the impact of cell-type size variation (i.e., statistical power).

(G) Comparison of DE genes in microglia between the 9 Ab+ individuals that are clinically diagnosed with AD within 5 years from the biopsy collection and the

remaining 10 Ab+ individuals.

(H) Microglia DE genes from the biopsy dataset are upregulated in two AD postmortem studies and are enriched for the markers of GPNMB-LPL and LPL-CD83

microglia states. Meta-gene expression of the upregulated microglial DE genes from our dataset in two published postmortem studies.4,6 The meta-gene was

constructed by summing their UMI counts in each cell and normalizing by the nUMI. The gray lines illustrate the median expression of the meta-gene across

microglia states.

(I) Differential expression analysis of astrocyte genes in response to Microglia GPNMB-EYA2 and LPL-CD83 expansion. The DE genes (FDR-adjusted

p value < 0.05) are represented in red. Fractions of microglia GPNMB-EYA2 and LPL-CD83 cells in individuals are normalized using an empirical normal cu-

mulative estimation function (ecdf function in R) to have a range between zero and one.

(J) Enrichment of mouse microglia states in response to various conditions (Fisher’s exact test; FDR-adjusted p value < 0.1).

(K) Overlap between top 100 microglia state markers and the genes in proximity with human-accelerated regions (HARs).47
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Figure S6. Nomination of amyloid-producing cell types in the human frontal cortex, related to Figure 5

(A) Bar chart showing �log10-transformed p values for various ordering statistics (indicated at bottom right) based on GSEA of Ab production and secretion

geneset (Table S5) and cell class DE genes.

(B) Dot plot denoting differential expression of leading-edge genes, identified by the GSEA of Ab gene set in Figure 5A, in Ab+ subjects versus Ab-free biopsy

samples. Color correlates with logFC and size correlates to �log10-transformed p values.

(C) Correlation analysis results obtained via fast gene set enrichment analysis (fGSEA) (see STARMethods) comparing differentially expressed gene lists between

all major cell classes and oligodendrocytes, with increasingly liberal thresholds (larger gene lists) for assigning univariate significance.

(D) Overlap of genes expressed in oligodendrocytes with other major cell classes. Different thresholds were selected to consider a gene as expressed (x axis)

based on the percentage of the cells in which the gene has non-zero UMI.

(E and F) Signed �log10-transformed p values associated with fGSEA enrichment across increasing Ab and tau burdens for all major cell types (glia in E and

neurons in F) in human frontal cortex from DE analysis of the human biopsy dataset.

(G) Meta-analysis p values for GSEA of the Ab associated gene set in the DE genes of two postmortem AD case-control datasets,3,4 for six cell classes. Bolded

bars indicate FDR significance.
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Figure S7. Single-cell transcriptomics and immunohistochemistry of ESC-derived oligodendrocyte and neuron cultures, related to Figure 6

(A and D) Violin plot of number of nUMI (top) and nGene (bottom) per cell type identified in single-cell transcriptomics of ESC-derived neuron (A) and

(D) oligodendrocyte lineage cultures. In boxplots, center line, median; box limits, upper and lower quartiles; whiskers, 1.53 interquartile range; points, outliers.

(B and E) Key marker genes for cell types identified from single-cell transcriptomics of ESC-derived iExN (B) and (E) iOligo cultures.

(C and F) Composition of ESC-derived iExN (C) and iOligo (F) cultures based upon single-cell cluster annotations.

(G) Representative images of immunofluorescence stains of PAX6 and NeuN (G) in ESC-derived iOligo cultures.

(legend continued on next page)
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(H and I) Boxplots of average intensity values per cell (normalized to DAPI intensity) across days of differentiation forNeuN, PAX6 (H),O4, andMBP (I). Box upper

and lower bounds represent upper and lower quartiles and Whisker distance from upper and lower hinges represents%1.5 times the interquartile range. Center

line indicates the median value.

(J) Total Ab levels from conditioned media isolated from ESC-derived microglia and blank control derived from unconditioned oligodendrocyte differentiation

media. *** p < 0.001, ** p < 0.01, * p < 0.05, n.s., not significant. Statistical tests are based on a linear mixed-effect model that compares immunofluorescence

signal intensity per cell using each sample well as the levels of the random effect. Statistical significance for comparing b-amyloid protein values was determined

via the Student’s t test.
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