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Single-cell and single-nucleus RNA-sequencing (scRNA-seq 
and snRNA-seq, respectively) has expanded rapidly, as 
quantified by the dramatic rise in the number of studies and 

numbers of cells profiled1,2. Due to the cost and effort necessary 
to conduct these assays, considerable resources have been put 
toward optimizing protocols to isolate high-quality, viable cells. 
Enzymatic digestion has become the preferred method of isolation 
from many solid tissues, due to the ability of proteolytic enzymes 
to easily digest tough tissue substructures3–9. Most of these isola-
tion protocols are performed at elevated temperatures to maxi-
mize enzyme efficacy and thereby cell yield and viability. However, 
as the goal of scRNA-seq studies is to produce transcriptional pro-
files that are reflective of the in vivo state, it is critical to determine 
exactly how an isolation protocol modifies the transcriptional 
state of cells ex vivo.

Furthermore, profiling human tissue often requires the use of 
single-nucleus isolation to enable the profiling of frozen samples 
from archival tissue banks10,11. snRNA-seq is especially critical for 
tissues such as the brain, where obtaining tissue from living donors 
is difficult and only possible under very specific disease/injury con-
ditions. However, few studies have examined the human brain for 

cell-type-specific differences in transcriptional states as a result of 
tissue handling or acute pre/postmortem processes12, and to our 
knowledge none have done so in a cell-type-specific manner using 
snRNA-seq.

In this study we sought to understand and characterize the 
cell-type-specific transcriptional responses to dissociation of mouse 
brain tissue with standard enzymatic digestion, and to evaluate how 
acute pre/postmortem variables may affect the transcriptional pro-
files of nuclei isolated from human brain. In the mouse CNS, we 
find microglia are preferentially sensitive to ex vivo artifacts and 
characterize this ex vivo response through in-depth comparative 
analyses of multiple microglial isolation protocols. We also perform 
reanalysis of several published datasets to demonstrate how the 
use of enzymatic and/or room-temperature processing can impact 
downstream results and conclusions, underscoring its prevalence 
and the need for new, flexible protocols that address this issue. 
When enzymatic digestion is experimentally required, we provide 
an optimized and rigorously validated flexible protocol that utilizes 
the addition of transcriptional and translational inhibitors during 
multiple steps of the dissociation process. We demonstrate that this 
protocol effectively eliminates the artifactual ex vivo transcriptional 
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signature in mouse CNS tissue, as well as in non-CNS cell types and 
across species.

To examine whether postmortem human brain also displays evi-
dence of similar transcriptional response, we perform snRNA-seq 
on postmortem brain and reanalyze several published datasets. We 
find a similar gene signature is present in postmortem microglia 
and astrocytes, across all snRNA-seq datasets analyzed, although 
it is highly variable between subjects. Through the use of acutely 
resected neurosurgical tissue, we reveal that a similar signature can 
be detected in microglia following prolonged exposure to room tem-
perature. These results suggest that the presence of this signature in 
postmortem brain samples may be the result of a combination of 
acute premortem (agonal state, cause of death, comorbidities and 
so on) and postmortem (postmortem interval (PMI), storage time, 
RNA quality and so on) variables. Together, our results provide a 
methodological solution for preventing artifactual gene expression 
changes during enzymatic digestion of fresh tissue and a reference 
for future deeper analysis on the potential confounding states pres-
ent in postmortem human samples.

Results
scRNA-seq reveals that mouse microglia are highly sensitive to ex 
vivo alterations. As the tissue-resident macrophages of the brain, 
microglia are highly sensitive to perturbations in their environ-
ment13,14. Previously, we optimized a cold mechanical dissociation 
protocol to isolate microglia for scRNA-seq with minimal ex vivo 
transcriptional alterations15. However, the yield using this protocol 
is lower than enzymatic-based protocols, especially in older mice, 
and therefore it may not be suitable for all experimental designs.

To systematically characterize the microglial response to enzy-
matic dissociation, we compared our previously optimized cold 
mechanical dissociation with traditional enzymatic digestion. As 
we suspected that enzymatic dissociation would induce an aber-
rant transcriptional response, we modified a protocol previously 
designed to prevent ex vivo neuronal activity16 and added a cock-
tail of transcriptional or transcriptional and translational inhibitors 
during multiple steps of the experiment (Fig. 1a). We also main-
tained tissue/cells on ice with the exception of the enzymatic diges-
tion (37 °C). Microglia/myeloid cells were then sorted as any live 
dual-positive CD45+/CD11b+ cells using fluorescence-activated cell 
sorting (FACS) (Fig. 1a and Supplementary Fig. 1a,b). Of note, we 
observed substantial loss of some cell-surface receptors following 
enzymatic digestion, in line with previous work in peripheral immu-
nology (Supplementary Fig. 1d–f and Supplementary Note 1)3,5–9. 
This finding has important implications for any study investigating 
extracellular proteins, but is especially critical for single-cell tech-
niques such as flow cytometry, cytometry by time of flight (CyTOF) 
and multimodal sequencing methods (for example, cellular index-
ing of transcriptomes and epitopes by sequencing (CITE-Seq))17,18 
(Supplementary Note 1).

Following quality control, we analyzed 19,563 cells from 12 
mice (n = 3 per condition) (Supplementary Table 1). In addition 
to a small number of brain-/brain-border-associated macrophages/
monocytes, we identified four primary clusters of microglia that 
were present in all four groups (Fig. 1b). In line with our previ-
ous work15, we find that adult microglia are largely homogenous. 
We also identified several smaller clusters of microglia, which 
we annotated on the basis of the cluster-specific marker genes: 
proliferative (for example, Top2a, Birc5), interferon-responsive 
(Ifitm3, Irf7) and chemokine-expressing (Ccl3, Ccl4) (Fig. 1b and 
Supplementary Fig. 2).

An additional cluster was nearly exclusively composed of 
cells from samples enzymatically digested without inhibitors 
(ENZ-NONE) (Fig. 1c,e), characterized by expression of several 
immediate early genes (IEGs) (for example, Fos, Jun), stress-induced 
(Hspa1a, Dusp1) and immune-signaling genes (Ccl3, Ccl4) (Fig. 1d  

and Supplementary Fig. 2c,d). Given the nature of the genes 
expressed and its overwhelming enrichment in the ENZ-NONE 
group, we termed this cluster ex vivo ‘activated’ microglia (exAM). 
We found that ENZ-NONE samples exhibited a significant decrease 
in the proportion of cells in the homeostatic cluster and a con-
comitant increase in proportion of cells in the exAM cluster (*false 
discovery rate (FDR) ≤ 0.004; ENZ-NONE versus all other groups; 
Methods) (Fig. 1e and Supplementary Table 3). To confirm exAM 
cells did not simply represent low-quality or dead/dying cells, 
we analyzed several standard scRNA-seq quality control metrics 
and demonstrate that the exAM cluster was of equal or signifi-
cantly better quality compared with either the homeostatic clus-
ter or all non-exAM cells in all of the metrics examined (P < 0.05) 
(Supplementary Fig. 3a).

To identify the differentially expressed genes (DEGs) following 
enzymatic digestion, we performed differential state analysis using 
sample-level comparisons19,20 by creating pseudobulk ‘Metacells’15 
by aggregating expression across all cells within each biological 
replicate and then performing differential expression (DE) anal-
ysis using DESeq2 (Supplementary Tables 4–12)15,19–21. We also 
performed marker analysis between clusters using model-based 
analysis of single-cell transcriptomes (MAST) (Supplementary 
Tables 13–17 and Methods), but due to issues with subjectivity 
in clustering22,23 and inflation of P values in cluster versus cluster 
comparisons19,24,25 we did not use this analysis as the basis for dif-
ferential state comparisons. We identified a consensus upregulated 
DE signature shared between the comparisons of each experi-
mental group with the ENZ-NONE group (Supplementary Tables 
4–8). This signature was composed of a number of different types 
of genes including IEGs (for example, Fos, Jun), genes induced by 
cellular response to stress (Hspa1a, Dusp1)26–28 and genes asso-
ciated with regulation of transcription (Hist1h1d, Hist1h2ac), 
immune-signaling (Ccl3, Ccl4) and parts of the NF-κB signaling 
cascade (Nfkbiz, Nfkbid) (Supplementary Tables 4 and 5). To visu-
alize which cells in the dataset were enriched for this signature, 
we performed gene module scoring29. We created two scores, one 
using a core microglial gene signature (Fig. 1f and Supplementary 
Table 4) aggregated from previous publications and another score, 
which we refer to as the ‘activation’ score, using the consensus DEG 
list (Fig. 1g,h and Supplementary Table 4). Analysis of enrichment 
of this ‘activation’ signature overlaid onto t-distributed stochastic 
neighbor embedding (t-SNE) coordinates (Fig. 1g) and against the 
microglial identity score (Fig. 1h) demonstrated that this activa-
tion signature was almost exclusively enriched in cells from the  
exAM cluster.

The overlap of two cluster markers (Ccl3, Ccl4) between the 
chemokine and exAM clusters required additional examination to 
confirm that the small chemokine population was truly an in vivo 
state. We performed single-molecule fluorescence in situ hybridiza-
tion (smFISH) on acutely isolated and snap-frozen tissue, which 
preserves cells in as close to an vivo state as possible. In line with 
our previous study and others15,30, we confirm that, while extremely 
rare, the chemokine cluster Ccl4+ cells are a true in vivo state and 
not merely an additional dissociation-induced response (Fig. 1i).

To examine whether presence of inhibitors had any adverse 
impacts on gene expression, we performed further DE compari-
sons. Analysis of Dounce without inhibitors (DNC-NONE) versus 
Dounce with inhibitors (DNC-INHIB) groups found no significant 
DEGs between the groups (Supplementary Tables 9 and 12), indi-
cating that the use of inhibitors in current scRNA-seq pipeline(s) 
appears to have negligible adverse effect on gene expression.

To further delve into the prevalence of the exAM signature, we 
generated/analyzed two additional microglial datasets. First, anal-
ysis of data from a separate mouse experiment revealed that arti-
facts are possible even when using ideal isolation methods when 
there are small differences in sample processing before cell capture 
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(Supplementary Fig. 4 and Supplementary Note 2). We found that 
an issue resulting in increased time at room temperature for one 
sample during cell sorting induced the exAM signature selectively 

in that replicate but not the other three (Supplementary Fig. 4), 
highlighting the importance of the inclusion of true biological repli-
cates in scRNA-seq experiments. We also confirmed that the exAM 
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signature was not sensitive to differences in single-cell capture/
library preparation (Supplementary Figs. 5 and 6).

Mouse microglia are especially sensitive to ex vivo alterations in 
gene expression compared with other CNS cell types. To analyze 
all CNS cell types simultaneously via scRNA-seq, while maintaining 
good cell viability, enzymatic dissociation is required. However, few 
studies have examined whether CNS cell types other than microg-
lia/myeloid cells exhibit altered gene expression when isolated from 
their in situ environment31–34. To characterize the transcriptomic 
response of all CNS cell types following enzymatic digestion, we used 
the same transcriptional/translational inhibitor cocktail (Fig. 2a)  
and performed scRNA-seq on cells without further FACS purifica-
tion. We analyzed 10,166 cells (post quality control; n = 2 per group) 
and identified 16 broad clusters, representing all of the major cell 
types found in the CNS (Fig. 2b and Supplementary Fig. 7a,c).

Microglia were the most prominent cell type in the dataset 
using this digestion protocol (Fig. 2b,c,e), likely indicating that the 
Miltenyi dissociation system utilized is not appropriate for general 
unbiased profiling of brain tissue when more accurate cell-type pro-
portions are desired. One of the two microglial clusters was almost 
completely composed of cells digested without inhibitors (Fig. 2d, 
circled) and expressed multiple exAM markers (Supplementary 
Fig. 7c). Analysis of the proportion of cells from each experimental 
group per cluster revealed that only the microglial clusters differed 
significantly (*FDR < 0.003) (Fig. 2e and Supplementary Table 18).

DE analysis, using our Metacell pipeline (Methods), revealed 
a signature of 18 genes that were significantly upregulated and 
none downregulated when cells were isolated without inhibitors 
(Supplementary Tables 4 and 19, Fig. 2i and Supplementary Fig. 7c). 
We also performed marker gene analysis between the two microglial 
clusters using MAST (Supplementary Table 20 and Methods). The 
Metacell DEGs exhibited significant overlap with the previously 
identified DEG list from the microglia-only analysis, confirming 
that enzymatic digestion, not FACS, was the key factor in the induc-
tion of this aberrant response. Further analysis of the exAM signa-
ture by gene module scoring and expression of key exAM markers 
demonstrated that the signature was present almost entirely in cells 
from the exAM cluster (Fig. 2f–i).

Subclustering analysis of our dataset revealed that microglia/
myeloid cells were the only major cell class that exhibited clus-
tering driven by the presence/absence of the inhibitor cocktail 
(Supplementary Fig. 8a–f). However, in other cell types, includ-
ing oligodendrocytes/oligodendrocyte precursors, we did identify 
slightly increased IEG expression in cells digested without inhibi-
tors (Supplementary Fig. 8g–i). These results are in agreement with 
previous in vitro work which found that microglial reaction to 
heat stress was significantly faster than for other CNS cell types35, 
although that does not preclude such artifacts being present in other 
cell types, depending on the details of cell isolation33.

Presence of artifactual microglia signature is common across 
multiple experimental parameters. To assess the prevalence of 
this exAM signature beyond the present study, we examined several 
published datasets36–40. This reanalysis included datasets processed 
with several different scRNA-seq technologies (10X Genomics 3ʹ v.1, 
10X 3ʹ v.2, Smart-Seq2, Drop-Seq and Microwell Seq), dissociation 
enzymes (papain, collagenase), brain regions (whole brain, cortex, 
subventricular zone (SVZ), spinal cord) and other key experimental 
variables (Supplementary Fig. 9a–g). We observed enrichment of 
the exAM signature via gene module scoring in the myeloid popula-
tions, consistent with ex vivo activation (Supplementary Fig. 9a–e). 
We also reanalyzed our previous study15, which utilized cold Dounce 
homogenization, and found minimal presence of cells enriched for 
the exAM signature (Supplementary Fig. 9f), confirming that cold 
Dounce homogenization is sufficient to prevent ex vivo activation.

Finally, we sought to characterize the impact of ex vivo activation 
on the interpretation of results from two common scRNA-seq study 
types: unbiased characterization of complex tissue (atlas datasets) 
and case–control studies. First, examination of the cell annotations 
from two atlas studies that were part of our reanalysis, as well as 
our own data (Fig. 2a and Supplementary Fig. 9d,e), revealed that 
ex vivo activation resulted in mis-annotation of exAMs as extra 
microglial clusters (Supplementary Note 3)37,39. Second, reanalysis 
of two case–control studies41,42 demonstrated significant differences 
in the level of induction of the exAM signature across the condi-
tions being compared (Supplementary Note 4 and Supplementary 
Fig. 10). Our reanalyses demonstrate that induction of the exAM 
signature can occur differentially across experimental conditions 
and may impact downstream analyses.

Artifactual signature is shared by other immune populations 
and tissues. We also wondered whether other myeloid lineage CNS 
cells, such as those found in the choroid plexus, vasculature and pia, 
were sensitive to ex vivo gene expression changes. Consistent with 
a previous report in the literature43, we found that non-microglial 
CNS-associated macrophages present in our dataset exhibited 
enrichment of the artifactual exAM signature when tissue was enzy-
matically digested without inhibitors (Supplementary Fig. 11a–d).

Our consensus exAM signature does overlap with the dis-
sociation signature in the study by Van Hove et al.[43] (19 of 25 
genes in consensus exAM list; Supplementary Tables 4, 5 and 
21a). We also examined two other studies in the literature that 
have utilized scRNA-seq to examine dissociation-induced genes 
in non-CNS tissue (mouse muscle and kidney)44,45. Comparison 
of our consensus exAM gene list with those studies yielded over-
lap of 16 and 11 genes, respectively (Supplementary Table 21b,c). 
When we compare the three lists of overlapping genes with our 
study, we find the majority of genes are shared across all tissue/
cell types, indicative of a common cellular response to dissociation 
(Supplementary Table 21d). However, we do find some genes that 
appear tissue-/cell-type-specific to myeloid cells, such as Ccl3 and 
Ccl4 (Supplementary Table 21d).

Given the shared nature of this signature across multiple cell 
types and tissues, we also wondered whether dissociation artifacts 
may confound comparisons between circulating immune cells in 
the blood and analogous tissue-resident populations, which can 
only be isolated following solid organ/tissue dissociation. We per-
formed reanalysis of two literature datasets that performed this type 
of comparison in both humans and mice (Supplementary Note 5 
and Supplementary Fig. 12)42,46. Our results demonstrate that some 
signatures previously characterized as tissue-resident signatures 
are often significantly enriched for dissociation-related signatures, 
underscoring the need for recognizing these artifactual signatures 
to disentangle them from true in vivo biologically driven transcrip-
tional signatures of tissue residency (Supplementary Note 5 and 
Supplementary Fig. 12).

To further examine this possibility and broaden the applicability 
of our inhibitor cocktail beyond the CNS and to other species, we 
performed a small pilot scRNA-seq analysis of human peripheral 
blood mononuclear cells (PBMCs). Before PBMC isolation, whole 
blood was subjected to a mock ‘digestion’ (incubated at 37 °C with 
or without our transcriptional/translational inhibitor cocktail). 
PBMCs were then isolated following a standard protocol before 
scRNA-seq profiling. Analysis of this scRNA-seq dataset revealed 
significant differences in clustering in most cell types represented 
in the dataset (including both lymphoid and myeloid populations; 
Supplementary Fig. 13a,b), dependent on inhibitor condition 
(Supplementary Fig. 13c, circled).

These differences in clustering were driven by shared gene 
expression changes across multiple lymphoid and myeloid cell types 
(Supplementary Fig. 13d–f and Methods). We also applied module 
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scoring using the homologous genes to those in the exAM signature. 
The mouse signature showed enrichment preferentially in mono-
cytes, again suggesting that some of the signature we originally 

identified in microglia may be common throughout myeloid lineage 
cells (Supplementary Fig. 13e). We also found a high concordance 
between genes that were upregulated in ‘digested’ PBMCs and those 
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differential abundance testing). f,g, Gene module scoring results plotted on t-SNE coordinates. f, Microglial identity score (Methods and Supplementary 
Table 4). g, Activation score based on DEGs from ‘Metacell’ pseudobulk analysis (Methods and Supplementary Table 4). h, Scatterplot of gene module 
scores from f and g colored by cluster from panel b. i, Enrichment of genes from activation score in exAM microglia cluster. CP, choroid plexus; NPC, 
neural progenitor cells; NSC, neural stem cells; OEC, olfactory ensheathing cells; OPC, oligodendrocyte progenitor cells; RBC, red blood cells.
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Fig. 3 | snRNA-seq of human postmortem tissue identifies enrichment of mouse dissociation gene signatures in human microglia and astrocytes. 
a, Experimental design schematic for snRNA-seq of all cell types from frozen postmortem brain tissue. b, UMAP plot of 47,505 nuclei analyzed via 
snRNA-seq from three postmortem subjects following LIGER analysis, colored by major cell type. c, Expression of canonical marker genes  
delineates major cell types. d, Visualization of the gene module scoring of the mouse DEG signature on human postmortem snRNA-seq dataset.  
e, Gene expression of exAM signature gene FOS across clusters. f–k, Plots of mouse activation score versus sample PMI (y axis) for each of the major  
CNS cell classes present in the dataset: f, microglia, g, astrocytes, h, oligodendrocytes, i, oligodendrocyte precursor cells, j, excitatory neurons,  
k, inhibitory neurons. f-k, Percentages denote number of nuclei above enrichment threshold denoted with gray dotted line; individual points are colored  
by donor.
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that were observed as upregulated in tissue-resident cells following 
tissue digestion in the Pasciuto et al.42 and Crinier et al.46 studies 
(Supplementary Fig. 13f).

Analysis of human postmortem snRNA-seq identifies simi-
lar gene signatures in both microglia and astrocytes. Following 
our characterization of mouse tissue, we hypothesized that acute 
pre/postmortem processes might also induce a similar signature 
in human tissue, despite the lack of need for enzymatic disso-
ciation and/or increased temperatures during nuclei isolation for 
snRNA-seq. We performed nuclei isolation, sorting and snRNA-seq 
using the 10X Genomics 3ʹ v.3 kit, from postmortem donors with a 
wide spread of PMIs (Fig. 3a) (Supplementary Table 2). Integrative 
analysis using LIGER47,48, of 47,505 nuclei across all three donors, 
identified all of the expected major cell types present in the CNS, as 
well as some contaminating peripheral immune cells (Fig. 3b,c and 
Supplementary Fig. 14a–c).

To determine whether the ex vivo dissociation signature we 
identified in mice was enriched in any particular cell type in human 
postmortem data, we performed gene module scoring (using 
homologous genes to the DEG set identified in the analysis of all 
CNS cell types in the mouse) (Supplementary Tables 4 and 19). 
Similar to mice, human postmortem microglia exhibited significant 
enrichment of this signature, as did a small number of astrocytes 
(Fig. 3d,e). To quantify the enrichment of the signature across the 
various cell types, we plotted the percentage of nuclei above an 
enrichment threshold (Methods) versus PMI for each of the donors 
(Fig. 3f–k). This analysis demonstrated that microglia and some 
astrocytes exhibited the greatest enrichment of human orthologs of 
the mouse signature genes and that the percentage of nuclei above 
threshold per sample was both highly variable and did not correlate 
with PMI (Fig. 3f–k).

We additionally performed a reanalysis of several published 
snRNA-seq datasets (Supplementary Table 2)49–51 using our 
LIGER-based pipeline, aggregating a total of 49 samples and 248,026 
nuclei, and included both controls (non-neurological disease) and 
donors with Alzheimer’s disease (Supplementary Fig. 14).

When we performed the same module scoring using the mouse 
signature, we found that microglia and some astrocytes were again 
the most enriched for the signature (Supplementary Fig. 14, right-
most column). Due to significant differences in gene/transcript 
detection sensitivity across these datasets, comparison of the raw 
expression values remains challenging (Supplementary Fig. 15 and 
Supplementary Note 6). While these results indicated some enrich-
ment in postmortem tissue, we also wondered if we could identify 
this signature in postmortem data without a priori knowledge of 
which genes were a part of the signature. To do this, we performed 
analysis of the shared LIGER integrative non-negative matrix fac-
torization (iNMF) factors, which have been previously shown to 

identify gene signatures that correspond to biologically relevant sig-
nals47. We first extracted major cell types from each dataset and then 
performed a combined subclustering analysis. In total, we found an 
iNMF factor in each cell type that shared at least one gene with the 
combined mouse signature gene lists (Supplementary Table 22). We 
examined the degree of overlap between the top-ranked genes in 
each of these shared factors (Methods) and the combined mouse 
gene lists. Only the factors from the microglial and astrocyte anal-
yses exhibited a 25% or greater overlap with the mouse gene list 
(Supplementary Table 22).

The microglial factor (Fig. 4a) was strikingly similar to the mouse 
signature, with 79% (30 of 38) of the genes directly overlapping with 
mouse signature or that were genes from similar families/pathways. 
The astrocyte postmortem factor (Fig. 4b) exhibited modest overlap 
with the mouse signature, as 44% (12 of 27) directly overlapped or 
were genes in similar families. Finally, there were three genes that 
overlapped between the microglial and astrocyte factors that were 
not a part of consensus mouse gene lists (UBC, DDIT4 and HSPB1), 
but which unsurprisingly are also part of cellular stress and damage 
response machinery52–55.

Freezing delay of acutely isolated human tissue is sufficient to 
induce similar microglial but not astrocyte gene signatures. To 
further examine potential sources of these iNMF signatures in 
human microglia/astrocytes, we profiled acutely isolated human 
brain tissue. Peri-tumor tissue, normally discarded during surgery, 
was obtained and divided into two fractions. Half of each sample 
was immediately snap-frozen in liquid nitrogen and the other half 
was incubated in an artificial cerebrospinal fluid medium for 2 h at 
room temperature and another 4 h at 4 °C before being snap-frozen 
(Fig. 4c).

We performed snRNA-seq followed by integrative analysis47 to 
extract the microglia and astrocytes. To determine whether a tech-
nical variable (freezing delay) induced a similar signature to that 
observed in postmortem nuclei, we performed gene module scoring 
using the LIGER iNMF factor gene lists from postmortem microglia 
or astrocytes as input (Supplementary Table 22). We found a signifi-
cant enrichment of the iNMF microglial factor at the 6-h timepoint 
compared with the 0-h timepoint (P < 3.2 × 10−215) (Fig. 4d–f), corre-
sponding to 31 of 38 genes from the factor being significantly differ-
ent (Fig. 4g and Supplementary Table 23). These results suggest that 
the gene expression signature we identified in postmortem human 
microglia can be induced by a number of cell-autonomous molecular 
processes likely including, among others, hypoxia, cell death and tem-
perature stress. In astrocytes, we found a weaker enrichment of the 
corresponding postmortem signature at the 6-h timepoint (P < 0.05) 
(Fig. 4h–j), wherein only 4 of the 27 genes from the LIGER factor 
were differentially expressed, and of those only ATF3 overlapped 
with the mouse signature (Fig. 4k and Supplementary Table 24),  

Fig. 4 | LiGER analysis independently identifies similar gene expression signatures in postmortem data that are enriched in microglia following altered 
sample processing. a, UMAP plot visualizing the enrichment of shared LIGER factor for 12,790 microglial nuclei from 48 samples across all postmortem 
datasets. b, UMAP plot visualizing the enrichment of shared LIGER factor for 23,998 astrocyte nuclei from 49 samples across all postmortem datasets. For 
both a and b, inset displays plot of normalized cell-specific factor loading scores across all genes in the dataset (dashed line indicates threshold cutoff for 
top genes for downstream analysis; Supplementary Table 22). Top loading genes, in order, are shown to the right of the inset plot. c, Experimental design 
schematic for experiment to analyze the effects of altered sample processing on gene expression. d–f, Visualization of gene module scoring results for score 
based on postmortem microglia factor, from a, in both snap-frozen (d) and 6-h delayed freezing (e) microglia nuclei on UMAP coordinates or via violin plot 
split by experimental group (f). g, Gene expression of top 12 loading genes in microglial factor from a split by experimental group (Supplementary Table 
23 for DEG results). h–j, Visualization of gene module scoring results for score based on postmortem astrocyte factor, from b, in both snap-frozen (h) and 
6-h delayed freezing (i) astrocyte nuclei on UMAP coordinates or via violin plot split by experimental group (j). k, Gene expression of top 12 loading genes 
in astrocyte factor from b split by experimental group (Supplementary Table 24 for DEG results). l,m, Spearman correlation of the percentage of microglia 
above score threshold for microglia factor score in each postmortem sample versus l, PMI and m, age of donor; graph annotations list Spearman r values 
and significance. n, Plot of percentage of microglia above score threshold for microglia factor score in each postmortem sample split by diagnosis; n = 48 
independent samples from 5 studies/independent experiments (45 samples are from 4 previously published studies); n = 32 control/n = 16 Alzheimer’s 
disease. Data are presented as mean values ± s.e.m. AD, Alzheimer’s disease; NS, not significant; RT, room temperature.
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suggestive of differential time scales of activation for these two brain 
populations, as has been previously described35.

Human postmortem microglial gene signature does not correlate 
with available metadata variables. We then wanted to determine 
whether enrichment of this signature correlated with PMI or other 
available metadata variables. First, we quantified the proportion of 
microglia or astrocyte nuclei with a gene module score above the 
enrichment threshold (Methods) per sample in each of the datas-
ets, and then compared that percentage with various metadata vari-
ables. The only statistically significant correlation was found with 
age of the donor (Fig. 4l–n) (Spearman: r = 0.3208, *P = 0.0001, 
n = 48). However, this correlation appears to be strongly driven by a 
small number of samples from younger donors from a single study50  
(Fig. 4m, red and blue squares). Analysis of correlation in only sam-
ples of ages 75+ found no significant correlation (age 75+ Spearman: 
r = 0.1879, P = 0.2653, n = 37). Similar analyses across the post-
mortem astrocytes found nearly identical results (Supplementary  
Fig. 16a–c). Future analyses of a greater number of middle-aged 
samples will be needed to confirm this correlation and whether age 
itself is a cause, or rather is simply collinear with other variables 
such as cause of death or agonal state.

Discussion
The ability to profile complex tissues at single-cell resolution has 
the potential to transform our understanding of both normal and 
disease biology56–59, and advances made in multimodal profiling will 
only serve to enhance insights gained60,61. However, these biological 
discoveries rest on single-cell technologies being able to faithfully 
measure cell-type-specific expression patterns ex vivo. To obtain reli-
able measurements of in vivo transcriptional states, it is critical that 
best practice protocols be established in this emerging field. Previous 
reports comparing cell isolation protocols or cells postisolation have 
often focused on aspects such as cell viability and/or yield4,62 over 
whether the isolated cells are truly reflective of their in vivo state13,14. 
We therefore undertook the present study to characterize issues that 
occur during tissue dissociation or acute pre/postmortem processes 
at single-cell resolution in the mouse and human brain, to determine 
the prevalence and impact of the issue in current literature and to 
identify solutions to aid future studies and analyses.

While our previously optimized cold Dounce homogenization 
works well for microglia under most conditions, it does have its limita-
tions. Some experimental conditions may dictate the need for greater 
yield, especially for older or less-sensitive approaches (including many 
older bulk RNA-sequencing (RNA-seq) studies or protein-based anal-
yses), which is likely why many widely used and widely cited protocols 
for microglial isolation continue to include enzymatic digestion4,63,64. 
The other major drawback to our mechanical dissociation protocol 
is that while it purifies microglia, the combination of the tight pestle 
during the Dounce process and Percoll centrifugation leads to deple-
tion of the majority of other CNS cell types. One recent study pro-
posed a modified mechanical method to isolate all CNS cell types 
and appeared to succeed in significantly increasing neuronal cell 
yields during dissociation. However, the study lacked biological rep-
licates needed to perform proper analysis of cell-type abundance and 
reproducibility34. Consequently, the majority of studies have utilized 
enzymatic dissociation to study all CNS populations at single-cell 
resolution. However, emerging results from other tissues/cell types 
have begun to characterize dissociation artifacts following enzymatic 
digestion43–45,65,66. Two previous scRNA-seq studies had examined the 
brain, but the lack of biological replicates and/or low numbers of cells 
belonging to rarer cell types, such as microglia, meant that a detailed, 
reproducible, comparative analysis of the dissociation signature in the 
CNS has not been performed32,34.

Consistent with the reports from other tissues in mice, we found 
that typical enzymatic digestion of mouse brain tissue induced a 

host of transcriptional alterations34,43,44,65. Interestingly, we found 
this induction preferentially occurred in microglia and other brain 
myeloid cells. We also confirm, through reanalysis of the CNS lit-
erature, that induction of this aberrant ex vivo response is extremely 
widespread, and not specific to the enzyme, sequencing technology 
or specifics of the isolation/tissue processing protocol, and some of 
the signature appears to be inducible even just by the presence of pro-
longed room-temperature steps during otherwise favorable mechan-
ical dissociation protocols (Supplementary Notes 2 and 8). In line 
with previous work on the response of CNS cells to stress35, we found 
that induction of this ex vivo signature occurred only in microglia 
and other brain-associated myeloid cells, but, while not significant, 
we found that other cell types may show initial signs of this response, 
which could become significant under different conditions.

Through the use of a transcriptional and translational inhibitor 
cocktail at multiple steps of the protocol, we were successfully able 
to eliminate the ex vivo activation during enzymatic digestion, both 
in FACS-sorted myeloid cells and in an unsorted preparation of all 
CNS cell types. Our inhibitor-based protocol offers much greater 
experimental and tissue-/cell-type flexibility than previously devel-
oped experimental and computational solutions for this pervasive 
issue (see additional discussion of some alternative methods in 
Supplementary Note 7)33,34,45,65,67,68.

Given the prevalence of the signature in current literature, our 
results have substantial implications for many single-cell datasets: 
two examples include annotation of cell types and subtypes and DE 
in case–control studies.

The presence of dissociation-induced changes in atlas or survey 
studies and experiments analyzing digested versus undigested tis-
sues (or only digested tissue) has the potential to obscure biologi-
cally meaningful differences that would otherwise contribute more 
substantially to clustering and downstream analysis (Supplementary 
Note 3). Second, in case–control frameworks, we demonstrate with 
our reanalysis of two examples from the literature that, without 
knowledge of the presence of the exAM signature, it can result 
in spurious identification of the exAM signature as differentially 
expressed (Supplementary Note 4)41,42,69,70. A proper baseline that is 
not confounded by this ex vivo signature is key for the dissection of 
differences between case and control groups, especially when the 
biological differences are more subtle (see Supplementary Note 8 
for additional discussion of an example). Taken together, our results 
demonstrate that computational solutions, such as regression of a 
digestion signature or cell removal, can bias the interpretations of 
true biological states (Supplementary Notes 4, 5, and 7).

Finally, our results re-emphasize the long-standing importance 
of validating any RNA-seq results from dissociated or homogenized 
tissue by orthogonal in situ methods, ranging from ‘classic’ RNA 
in situ hybridization to new spatial transcriptomics approaches that 
utilize fresh-frozen, intact tissue sections.

The advent of snRNA-seq has unlocked the ability to unbiasedly 
assess transcriptional states of the human brain at single-cell resolu-
tion10,11. However, there are important quality control assessments 
that need to be performed and considered, especially as regards the 
impact of acute premortem variables and postmortem processes 
on gene expression12,71–77. Analysis of our own and previous human 
postmortem snRNA-seq datasets revealed a signature similar to the 
mouse exAM signature present in both microglia and astrocytes. 
This human signature was highly variable across donors and was not 
correlated with PMI or most other available postmortem meta vari-
ables. To determine whether this signature could be upregulated in 
human brain, we designed a study using a technical variable (freez-
ing delay) in acutely resected neurosurgical tissue and demonstrated 
that microglia upregulated the signature in the timeframe examined.

While signatures in postmortem microglia and astrocytes cor-
related with age across the entire dataset, the correlation was not 
robust across post hoc subgroup comparisons. As such, these 
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analyses would substantially benefit from profiling a much greater 
number of middle-aged samples. Furthermore, based on previous 
literature, it is also possible that other acute premortem variables 
such as cause of death, agonal state, increased comorbidities and 
others may be confounded with age, which will be important for 
future studies to examine71–76,78,79. It is also critical to note that acute 
premortem factors such as these are not ‘artificial’ as they reflect the 
true biology associated with agonal state, medication, comorbidi-
ties, cause of death and so on, but nonetheless these signatures do 
confound the ability to perform analysis between desired experi-
mental variables/groups (for example, disease status, cognitive 
function and so on) when not properly powered/controlled (see 
Supplementary Note 9 for discussion of results in controls versus 
patients with Alzheimer’s disease from our current analysis).

The potential for meta variables unrelated to the particular 
human condition/disease being studied to impact the signatures 
observed and potentially confound downstream analysis highlights 
the need for more complete metadata to be made public with stud-
ies of postmortem brain. While most studies report very common 
postmortem factors (for example, age at death, PMI), many vari-
ables are often not provided and could have significant impacts, 
such as RNA integrity number (RIN), which has been shown to 
confound analyses of dementia-related DEGs77. Additionally, very 
few transcriptomic studies provide information on acute premor-
tem variables or cause of death, which are particularly important 
as they may potentially have a much larger effect on RNA quality 
and gene expression71–76,78–80. It is worth noting that transcriptional 
signatures as a result of acute pre/postmortem variables may be far 
more complex than we have identified here, thus highlighting the 
need for more detailed metadata to connect transcriptomic signa-
tures to specific covariates. Finally, we suggest that future studies 
emphasize the sharing of as much metadata as possible, including 
these pre- and postmortem variables, to enable better more com-
prehensive analyses. Proper correction and controlling for these 
variables will be critical not just for understanding what may induce 
signatures similar to our microglial and astrocyte factors, but for 
appropriate downstream analysis including detection of DEGs77.

Overall, for now, the results of our analysis of human snRNA-seq 
lead us to caution overinterpretation of biological significance when 
observing gene signatures similar to the microglial and astrocyte 
factors we observe in postmortem samples. As a greater number 
of high-quality human datasets become available, this system-
atic approach and methods will enable better characterization of 
this signature and the factors that contribute to it. Most currently 
available human snRNA-seq datasets are limited by both the pro-
portion of microglia per sample81 and the dramatically lower sen-
sitivity of earlier single-cell chemistries/nuclei isolation protocols 
(Supplementary Note 6). New datasets with optimized protocols, 
greater numbers of nuclei per patient and greater numbers of 
patients will be critical to resolving both this potentially confound-
ing state, as well as the in vivo biologically relevant cell states of the 
human brain82. Finally, as we have discussed, it is particularly criti-
cal that studies provide substantially more public metadata on both 
pre- and postmortem variables, both for the interpretation of poten-
tially aberrant gene signatures and also for proper correction and 
control during analyses focused on understanding the complexities 
of human biology with scRNA-seq-/snRNA-seq-based methods.

In conclusion, we provide a method by which to eliminate ex vivo 
transcriptional activation during enzymatic digestion that is easy to 
implement, is functional across different tissue types and species, and 
therefore should require minimal effort to incorporate into existing 
protocols. We also demonstrate how lack of widespread understand-
ing of this signature both in the CNS and periphery has resulted in 
the pervasiveness of this signature in the current literature and can 
confound interpretations of results and conclusions of such stud-
ies. Using a combination of our own snRNA-seq and a reanalysis of  

published literature, we find that a similar signature is also expressed 
by microglia and astrocytes in postmortem brain. We also demon-
strate that this signature can be induced by technical variation in sam-
ple processing (freezing delay) in human brain tissue, indicating that 
its presence in postmortem brains may not be reflective of the in vivo 
variable of interest in a particular study. These datasets and method-
ologies should inform the design of future scRNA-seq/snRNA-seq 
experiments to avoid confounding impacts of technical signatures of 
identification and the interpretation of true biological signals.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41593-022-01022-8.

Received: 2 December 2020; Accepted: 25 January 2022;  
Published online: 8 March 2022

References
 1. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of 

single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).
 2. Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals 

trends in single-cell transcriptomics. Database (Oxford) 2020 (2020).
 3. Abuzakouk, M., Feighery, C. & O’Farrelly, C. Collagenase and Dispase 

enzymes disrupt lymphocyte surface molecules. J. Immunol. Methods 194, 
211–216 (1996).

 4. Cardona, A. E., Huang, D., Sasse, M. E. & Ransohoff, R. M. Isolation of 
murine microglial cells for RNA analysis or flow cytometry. Nat. Protoc. 1, 
1947–1951 (2006).

 5. Grange, C. et al. Phenotypic characterization and functional analysis of 
human tumor immune infiltration after mechanical and enzymatic 
disaggregation. J. Immunol. Methods 372, 119–126 (2011).

 6. Autengruber, A., Gereke, M., Hansen, G., Hennig, C. & Bruder, D. Impact of 
enzymatic tissue disintegration on the level of surface molecule expression 
and immune cell function. Eur. J. Microbiol. Immunol. (Bp) 2, 112–120 (2012).

 7. Botting, R. A. et al. Phenotypic and functional consequences of different 
isolation protocols on skin mononuclear phagocytes. J. Leukoc. Biol. 101, 
1393–1403 (2017).

 8. Schreurs, R. R. C. E. et al. Quantitative comparison of human intestinal 
mononuclear leukocyte isolation techniques for flow cytometric analyses.  
J. Immunol. Methods 445, 45–52 (2017).

 9. Reichard, A. & Asosingh, K. Best practices for preparing a single cell 
suspension from solid tissues for flow cytometry. Cytometry A 95, 219–226 
(2019).

 10. Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus 
RNA sequencing of the human brain. Science 352, 1586–1590 (2016).

 11. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. 
Nat. Methods 14, 955–958 (2017).

 12. Jaffe, A. E. Postmortem human brain genomics in neuropsychiatric 
disorders—how far can we go? Curr. Opin. Neurobiol. 36, 107–111 (2016).

 13. Gosselin, D. et al. An environment-dependent transcriptional network 
specifies human microglia identity. Science 356, (2017).

 14. Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, 
and function revealed by defined-medium cultures. Neuron 94,  
759–773.e8 (2017).

 15. Hammond, T. R. et al. Single-cell RNA sequencing of microglia throughout 
the mouse lifespan and in the injured brain reveals complex cell-state 
changes. Immunity 50, 253–271.e6 (2019).

 16. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic 
states in the mouse visual cortex. Nat. Neurosci. 21, 120–12 (2017).

 17. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in 
single cells. Nat. Methods 14, 865–868 (2017).

 18. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, 
gene expression and protein levels in single cells. Nat. Biotechnol. 39, 
1246–1258 (2021).

 19. Crowell, H. L. et al. muscat detects subpopulation-specific state transitions 
from multi-sample multi-condition single-cell transcriptomics data. Nat. 
Commun. 11, 6077 (2020).

 20. Squair, J. W. et al. Confronting false discoveries in single-cell differential 
expression. Nat. Commun. 12, 5692 (2021).

 21. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

NATuRE NEuROSCiENCE | VOL 25 | MARCH 2022 | 306–316 | www.nature.com/natureneuroscience 315

https://doi.org/10.1038/s41593-022-01022-8
https://doi.org/10.1038/s41593-022-01022-8
http://www.nature.com/natureneuroscience


Articles NATuRe NeuRoscieNce

 22. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised 
clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20, 273–282 (2019).

 23. Chari, T., Banerjee, J. & Pachter, L. The specious art of single-cell genomics. 
Preprint at bioRxiv, https://www.biorxiv.org/content/10.1101/2021.08.25.45769
6v3 (2021).

 24. Gao, L. L., Bien, J. & Witten, D. Selective Inference for Hierarchical 
Clustering. Preprint at https://arxiv.org/abs/2012.02936 (2020).

 25. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. 
Genome Biol. 21, 31 (2020).

 26. Wallin, R. P. et al. Heat-shock proteins as activators of the innate immune 
system. Trends Immunol. 23, 130–135 (2002).

 27. Hammer, M. et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset 
of LPS-induced genes and protects mice from lethal endotoxin shock. J. Exp. 
Med. 203, 15–20 (2006).

 28. Doberentz, E. & Madea, B. in Regulation of Heat Shock Protein Responses: 
Heat Shock Proteins (eds Asea, A. A. A. & Kaur, P.) Ch. 18 (Springer 
International Publishing, 2018).

 29. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic 
melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

 30. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells 
revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).

 31. Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular 
signatures of activation. Nat. Commun. 7, 11022 (2016).

 32. Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell 
populations using single-cell RNA-seq. Neuron 96, 313–329.e6 (2017).

 33. Saunders, A. et al. Molecular diversity and specializations among the cells of 
the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

 34. Mattei, D. et al. Enzymatic dissociation induces transcriptional and 
proteotype bias in brain cell populations. Int. J. Mol. Sci. 21 (2020).

 35. Satoh, J. & Kim, S. U. HSP72 induction by heat stress in human neurons and 
glial cells in culture. Brain Res. 653, 243–250 (1994).

 36. Mathys, H. et al. Temporal tracking of microglia activation in 
neurodegeneration at single-cell resolution. Cell Rep. 21, 366–380 (2017).

 37. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 
999–1014.e22 (2018).

 38. Zywitza, V., Misios, A., Bunatyan, L., Willnow, T. E. & Rajewsky, N. 
Single-cell transcriptomics characterizes cell types in the subventricular zone 
and uncovers molecular defects impairing adult neurogenesis. Cell Rep. 25, 
2457–2469.e8 (2018).

 39. Mizrak, D. et al. Single-cell analysis of regional differences in adult V-SVZ 
neural stem cell lineages. Cell Rep. 26, 394–406.e5 (2019).

 40. Plemel, J. R. et al. Microglia response following acute demyelination is 
heterogeneous and limits infiltrating macrophage dispersion. Sci. Adv. 6, 
eaay6324 (2020).

 41. Keren-Shaul, H. et al. A unique microglia type associated with restricting 
development of Alzheimer’s disease. Cell 169, 1276–1290.e17 (2017).

 42. Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult 
transition. Cell 182, 625–640.e24 (2020).

 43. Van Hove, H. et al. A single-cell atlas of mouse brain macrophages reveals 
unique transcriptional identities shaped by ontogeny and tissue environment. 
Nat. Neurosci. 22, 1021–1035 (2019).

 44. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced 
gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

 45. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage 
biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 
130 (2020).

 46. Crinier, A. et al. High-dimensional single-cell analysis identifies 
organ-specific signatures and conserved NK cell subsets in humans and mice. 
Immunity 49, 971–986.e5 (2018).

 47. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts 
features of brain cell identity. Cell 177, 1873–1887.e17 (2019).

 48. Gao, C. et al. Iterative single-cell multi-omic integration using online 
learning. Nat. Biotechnol. 39, 1000-1007 (2021).

 49. Morabito, S., Miyoshi, E., Michael, N. & Swarup, V. Integrative genomics 
approach identifies conserved transcriptomic networks in Alzheimer’s disease. 
Hum. Mol. Genet. 29, 2899-2919 (2020).

 50. Leng, K. et al. Molecular characterization of selectively vulnerable neurons in 
Alzheimer’s disease. Nat. Neurosci. 24, 276–287 (2021).

 51. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal 
TREM2-dependent and TREM2-independent cellular responses in 
Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

 52. Concannon, C. G., Gorman, A. M. & Samali, A. On the role of Hsp27 in 
regulating apoptosis. Apoptosis 8, 61–70 (2003).

 53. Wang, Z. et al. Dexamethasone-induced gene 2 (dig2) is a novel pro-survival 
stress gene induced rapidly by diverse apoptotic signals. J. Biol. Chem. 278, 
27053–27058 (2003).

 54. Ryu, K. Y. et al. The mouse polyubiquitin gene UbC is essential for fetal liver 
development, cell-cycle progression and stress tolerance. EMBO J. 26, 
2693–2706 (2007).

 55. Bianchi, M., Crinelli, R., Arbore, V. & Magnani, M. Induction of ubiquitin C 
(UBC) gene transcription is mediated by HSF1: role of proteotoxic and 
oxidative stress. FEBS Open Bio 8, 1471–1485 (2018).

 56. Regev, A. et al. The Human Cell Atlas. eLife 6 (2017).
 57. Stubbington, M. J. T., Rozenblatt-Rosen, O., Regev, A. & Teichmann, S. A. 

Single-cell transcriptomics to explore the immune system in health and 
disease. Science 358, 58–63 (2017).

 58. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to 
mechanism. Nature 541, 331–338 (2017).

 59. Taylor, D. M. et al. The Pediatric Cell Atlas: defining the growth phase of 
human development at single-cell resolution. Dev. Cell 49, 10–29 (2019).

 60. Schier, A. F. Single-cell biology: beyond the sum of its parts. Nat. Methods 17, 
17–20 (2020).

 61. Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of 
many. Nat. Methods 17, 11–14 (2020).

 62. de Haas, A. H., Boddeke, H. W., Brouwer, N. & Biber, K. Optimized isolation 
enables ex vivo analysis of microglia from various central nervous system 
regions. Glia 55, 1374–1384 (2007).

 63. Grabert, K. & McColl, B. W. Isolation and phenotyping of adult mouse 
microglial cells. Methods Mol. Biol. 1784, 77–86 (2018).

 64. Bordt, E. A. et al. Isolation of microglia from mouse or human tissue. STAR 
Protoc. 1, (2020).

 65. Adam, M., Potter, A. S. & Potter, S. S. Psychrophilic proteases dramatically 
reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development. 
Development 144, 3625–3632 (2017).

 66. Machado, L. et al. Tissue damage induces a conserved stress response that 
initiates quiescent muscle stem cell activation. Cell Stem Cell 28,  
1125–1135.e7 (2021).

 67. Sankowski, R. et al. Mapping microglia states in the human brain through the 
integration of high-dimensional techniques. Nat. Neurosci. 22,  
2098–2110 (2019).

 68. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in 
glioblastoma across species and disease stage reveals macrophage competition 
and specialization. Nat. Neurosci. 24, 595-610 (2021).

 69. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional 
phenotype of dysfunctional microglia in neurodegenerative diseases. 
Immunity 47, 566–581.e9 (2017).

 70. Kang, S. S. et al. Microglial translational profiling reveals a convergent APOE 
pathway from aging, amyloid, and tau. J. Exp. Med. 215,  
2235–2245 (2018).

 71. Hardy, J. A. et al. The patients dying after long terminal phase have acidotic 
brains; implications for biochemical measurements on autopsy tissue.  
J. Neural Transm. 61, 253–264 (1985).

 72. Harrison, P. J. et al. The relative importance of premortem acidosis and 
postmortem interval for human brain gene expression studies: selective 
mRNA vulnerability and comparison with their encoded proteins. Neurosci. 
Lett. 200, 151–154 (1995).

 73. Li, J. Z. et al. Systematic changes in gene expression in postmortem human 
brains associated with tissue pH and terminal medical conditions. Hum. Mol. 
Genet. 13, 609–616 (2004).

 74. Tomita, H. et al. Effect of agonal and postmortem factors on gene expression 
profile: quality control in microarray analyses of postmortem human brain. 
Biol. Psychiatry 55, 346–352 (2004).

 75. Monoranu, C. M. et al. pH measurement as quality control on human post 
mortem brain tissue: a study of the BrainNet Europe consortium. 
Neuropathol. Appl. Neurobiol. 35, 329–337 (2009).

 76. Durrenberger, P. F. et al. Effects of antemortem and postmortem variables on 
human brain mRNA quality: a BrainNet Europe study. J. Neuropathol. Exp. 
Neurol. 69, 70–81 (2010).

 77. Miller, J. A. et al. Neuropathological and transcriptomic characteristics of the 
aged brain. eLife 6, e31126 (2017).

 78. Yates, C. M., Butterworth, J., Tennant, M. C. & Gordon, A. Enzyme activities 
in relation to pH and lactate in postmortem brain in Alzheimer-type and 
other dementias. J. Neurochem. 55, 1624–1630 (1990).

 79. Webster, M. J. Tissue preparation and banking. Prog. Brain Res. 158,  
3–14 (2006).

 80. de Paiva Lopes, K. et al. Genetic analysis of the human microglial 
transcriptome across brain regions, aging and disease pathologies. Nat. Genet. 
54, 4-17 (2022).

 81. Liddelow, S. A., Marsh, S. E. & Stevens, B. Microglia and astrocytes in 
disease: dynamic duo or partners in crime? Trends Immunol. 41,  
820–835 (2020).

 82. Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell 
heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

NATuRE NEuROSCiENCE | VOL 25 | MARCH 2022 | 306–316 | www.nature.com/natureneuroscience316

https://www.biorxiv.org/content/10.1101/2021.08.25.457696v3
https://www.biorxiv.org/content/10.1101/2021.08.25.457696v3
https://arxiv.org/abs/2012.02936
http://www.nature.com/natureneuroscience


ArticlesNATuRe NeuRoscieNce

Methods
Animals. C57BL/6J mice (stock no. 000664) were purchased from Jackson 
Laboratories. All mouse single-cell sequencing studies were performed with male 
mice at post-natal day 89-90 (P89-90). Both male and female mice were used for 
smFISH studies. All animals were group housed on a 12-h/12-h light/dark cycle 
with access to food and water ad libitum. All experiments were reviewed and 
overseen by the institutional animal use and care committee at Boston Children’s 
Hospital in accordance with all National Institutes of Health guidelines for the 
humane treatment of animals. For a full breakdown of samples and metadata per 
replicate per dataset for mouse experiments, see Supplementary Table 1. All sample 
processing was performed in alternating order by experimental group. Sample 
order and batching are defined in Supplementary Table 1 and the GitHub code 
repository (link can be found in Single-cell analysis tools (below)).

Acute human tissue. Acutely isolated human brain tissue was obtained with 
informed consent under protocol REC 16/LO/2168 approved by the National 
Health Service Health Research Authority. Samples were transferred subject to 
Material Transfer Agreements between institutions and use and processing of acute 
brain tissue and sequencing were reviewed and approved by the Boston Children’s 
Hospital Institutional Review Board and the Broad Institute’s Office of Human 
Research Subjects Protection.

Adult brain tissue biopsies were taken from the site of neurosurgery resection 
for the original clinical indication. Samples were dissected into equal volumes 
and half were immediately (<5 min from time of tissue extraction) snap-frozen 
in liquid nitrogen and stored at −80 °C. For examination of technical component 
to gene expression profiles, the remaining half of the samples were placed in 
Hibernate A low fluorescence supplemented with 1x SOS (Cell Guidance Systems), 
2% Glutamax (Life Technologies), 1% P/S (Sigma), 0.1% BSA (Sigma), insulin 
(4 g ml−1, Sigma) and pyruvate (220 g ml−1, Gibco) at room temperature for 2 h and 
then 4 °C for 4 h before being snap-frozen in liquid nitrogen and stored at −80 °C. 
Samples were shipped on dry ice and stored at −80 °C before processing for nuclei 
isolation, sorting and sequencing.

All sample processing was performed in random order. Sample order and 
batching are defined in Supplementary Table 2 and the GitHub code repository.

Postmortem human brain. Postmortem autopsy tissue from control cases 
was obtained from the Massachusetts Alzheimer’s Disease Research Center at 
Massachusetts General Hospital. Tissue was collected with informed consent of 
patients or their relatives and approval of the Massachusetts General Hospital 
Institutional Review Board.

Human patient demographic information for tissue in the current study is 
provided in Supplementary Table 2. Postmortem tissue processing and sequencing 
experiments were performed at the Broad Institute and approved by the Broad 
Institute’s Office of Research Subject Protection.

All sample processing was performed in random order. Sample order and 
batching are defined in Supplementary Table 2 and the GitHub code repository.

Human PBMCs. Human PBMCs were obtained from blood drawn from a healthy 
volunteer (male, 35 yr old) in lithium heparin-coated tubes. Blood was collected in 
accordance with a protocol approved by Yale University Institutional Review Board 
with the informed consent of the patient. All sample processing was performed in 
random order. Sample order and batching are defined in Supplementary Table 2 
and the GitHub code repository.

Inhibitor cocktail to prevent activation. Inhibitor stocks were reconstituted 
and stored as follows. For actinomycin D and anisomycin, stocks were kept 
for no longer than 1 month following reconstitution, and ideally used within 
2 weeks post-reconstitution. Actinomycin D (Sigma-Aldrich, cat. no. A1410) 
was reconstituted in dimethylsulfoxide at stock concentration of 5 mg ml−1 and 
aliquoted and stored at −20 °C, protected from light. Triptolide (Sigma-Aldrich, 
cat. no. T3652) in dimethylsulfoxide at stock concentration of 10 mM was aliquoted 
and stored at −20 °C, protected from light. Anisomycin (Sigma-Aldrich, cat. no. 
A9789) was reconstituted in dimethylsulfoxide at stock concentration of 10 mg ml−1 
and aliquoted and stored at +4 °C, protected from light.

Three different buffer solutions were used at different steps in the protocol and 
are referred to as perfusion buffer, dissection buffer and digestion buffer.

The inhibitor cocktail was added to three different steps of the protocol, as follows:

Perfusion buffer (perfusion buffer + inhibitor). HBSS (without Ca2+, Mg2+ and 
Phenol Red; ThermoFisher Scientific, cat. no. 14175-145), actinomycin D with 
final concentration of 5 μg ml−1 (1:1,000 from stock) and triptolide 10 μM (1:1,000 
from stock). Add inhibitors immediately before beginning perfusion and keep on 
ice protected from light. Make fresh for each experiment.

Dissection buffer (dissection buffer + inhibitor). HBSS (without Ca2+, Mg2+ and 
Phenol Red), actinomycin D with final concentration of 5 μg ml−1 (1:1,000 from 
stock), triptolide 10 μM (1:1,000 from stock) and anisomycin 27.1 μg ml−1 (1:368.5 
from stock). Add inhibitors immediately before beginning perfusion and keep on 
ice protected from light. Make fresh for each experiment.

Digestion buffer (digestion buffer + inhibitor). Digestion buffer/enzyme mix of 
choice, actinomycin D with final concentration of 5 μg ml−1 (1:1,000 from stock), 
triptolide 10 μM (1:1,000 from stock) and anisomycin 27.1 μg ml−1 (1:368.5 from 
stock). Only add inhibitors to digestion mix immediately before the addition of 
tissue for digestion.

Single-cell isolation (all CNS cell types). Mice were anesthetized and perfused 
intracardially with ice-cold HBSS with or without inhibitor cocktail in perfusion 
buffer. Brains were quickly dissected and meninges removed as completely as 
possible and whole brains were placed in dissection buffer on ice with or without 
inhibitors and kept covered to protect from light. After all perfusions were 
completed, brains were quickly placed into a sagittal adult mouse brain slicer 
matrix (Zivic Instruments, cat. no. BSMAS005-2) and sliced into six even sections.

Immediately following brain slicing, slices were added to Miltenyi gentleMACS 
C Tubes with or without inhibitor cocktail added to the digestion mixture. Samples 
were placed in Miltenyi gentleMACS OctoDissociator and the 37C_ABDK_01 
protocol was run according to the manufacturer’s instructions. Once the program 
finished, the samples were briefly spun according to the Miltenyi protocol before 
being filtered through a 70-μm filter. Samples were washed with HBSS and spun to 
pellet cells. For isolation of all CNS cells, cell pellets were resuspended and overlaid 
with an appropriate volume of Miltenyi Debris Removal Solution according to 
the Miltenyi protocol. Debris was removed from the top layer and the solution 
was diluted with HBSS and spun to pellet cells. Cells collected following density 
gradient centrifugation were counted manually via a hemocytometer for loading 
into the 10X Chromium instrument.

Single-cell isolation (microglia/myeloid cells). Enzymatic dissociation of 
microglia from adult brain was performed identically to all CNS cells as described 
above until the density gradient centrifugation step.

Mechanical dissociation of microglia from adult brain was performed as 
previously described15, with the addition to ±inhibitor solutions during perfusion, 
dissection and Dounce steps. Perfusion and dissection were performed identically 
to the description above. Following dissection, brains were minced with a scalpel 
and then Dounce homogenized 15–20 times with a loose pestle and then 15–20 
times with a tight pestle, all while simultaneously rotating the pestle. The cell 
suspension was then passed through a pre-wet 70-μm filter.

Following mechanical or enzymatic digestion as described above, cell pellets 
were resuspended in 40% Percoll (GE Healthcare) in HBSS. Samples were spun 
for 1 h at 500g and 4 °C in a swinging bucket centrifuge. Pelleted cells were washed 
with HBSS and centrifuged for 5 min at 500g and 4 °C and resuspended in 50 μl of 
FACS buffer (0.5% BSA, 1 mM EDTA, 1× PBS; sterile filtered).

An additional dataset of animals who received a tail-vein injection of PBS  
18 h before processing, was processed identically to the mechanical dissociation 
dataset described above. For the 10X v.3.0 and v.3.1 comparison experiment, 
dissociation was performed using the cold mechanical Dounce homogenization as 
described above.

FACS. All steps were performed on ice or using a prechilled refrigerated centrifuge 
set to 4 °C, with all buffers/solutions prechilled before addition to samples. Cell 
suspensions (50 μl) were incubated for 20 min on ice with anti-CD16/CD32 to 
block Fc receptors (1:50; BioLegend, cat. no. 553141) and with a viability dye, 
eFlour780 (1:1,000; ThermoFisher Scientific, cat. no. 50-169-66), to identify live 
cells. The antibody master mix was created by adding all antibodies at 2× their 
final concentration and 10 μl of Brilliant Stain Buffer Plus (BD Biosciences, cat. no. 
566385) to FACS buffer. The master mix was composed of the following antibodies: 
CD11b-BV421 (BioLegend, cat. no. 101236; clone: M1/70; 1:100 master mix; final 
staining concentration 1:50), CD45-PE (BioLegend, cat. no. 103106; clone: 30-F11; 
1:200 master mix; final staining concentration 1:100), CX3CR1-Alexa Fluor 647 
(BioLegend, cat. no. 149004; clone: SA011F11; 1:500 master mix; final staining 
concentration 1:250). Following Fc block, 50 μl of antibody master mix was added 
to each sample to achieve 1× antibody concentration. Samples were incubated with 
staining antibodies for 20 min at 4 °C and then spun down for 5 min at 300g, before 
being resuspended in 500 μl of FACS buffer.

Sterile 96-well plates were precoated with 200 μl of FACS buffer and chilled for 
1 h during sample staining. All but 5 μl was removed and plates were kept chilled 
on ice until samples were ready to sort. To keep samples chilled during as much of 
the protocol as possible and to prevent contamination, each sample was sorted into 
a single well of an individual plate. The gating strategy for myeloid cell sorting was 
as follows (Supplementary Fig. 1b): live (live/dead eFluor780) cells versus debris 
(forward scatter (FSC) FSC-A versus side scatter (SSC) SSC-A), singlets (FSC-H 
versus FSC-A), CD45+/CD11b+. We intentionally set a liberal gate of any CD11b+/
CD45+ cells so as not to bias our scRNA-seq due to changes in cell-surface receptor 
expression (Supplementary Fig. 1b,c). CX3CR1 was excluded as a parameter used 
for cell sorting due to differences in staining between isolation methods as the 
result of cleavage of extracellular epitopes by enzymes (Supplementary Fig. 1d,e). A 
total of 12,000 myeloid cells were sorted on a special-order BD FACSAria II using 
a 70-μm nozzle with purity mode, at a total speed of ~10,000 events per second. 
Each sample took ~5–10 min in total to sort 12,000 live, double-positive, single 
cells. After sorting, plates were sealed with plastic covers and placed back on ice 
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until proceeding to 10X single-cell capture. For the 10X v.3.0 and v.3.1 comparison 
experiment, all aspects were the same except 10,000 total events were sorted.

The median fluorescence intensity (MFI) intensity of the CX3CR1 fluorescence 
(Alexa Fluor 647) of the CD45+ and CD11b+ population of cells was analyzed using 
FlowJo-V10, with statistical analysis performed using Prism 8.

During the sorting of the tail-vein PBS-injected dataset, a clog occurred during 
the sort of the final animal in that dataset. The cells sorted before the clog were 
discarded and the sample was placed back on ice. Following cleaning of the sorter 
the sample was sorted a second time into a fresh well. Consequently, the sample 
was transferred between room temperature and ice twice for a total time at room 
temperature of approximately 20 min (Supplementary Note 2).

Single-nucleus isolation and sorting. Nuclei were isolated from human samples 
according to a similar protocol previously published for use with mouse brain 
tissue83 (https://www.protocols.io/view/frozen-tissue-nuclei-extraction-for-
10xv3-snseq-bi62khge). See the protocols.io link for all buffers and solution 
concentrations. All steps were performed on ice or cold block and all tubes, tips 
and plates were precooled for >20 min before starting isolation. Briefly, 60-μm 
sections of cortex (~50 mg) were placed into a single well of a six-well plate and 
5–6 ml of extraction buffer was added to each well. Mechanical dissociation was 
performed through trituration using a P1000 pipette, pipetting 1 ml of solution 
slowly up and down with a 1-ml Rainin tip (cat. no. 30389212), without creating 
froth/bubbles, a total of 20 times. Tissue was left to rest in buffer for 2 min and 
trituration was repeated. A total of 4–5 rounds of trituration and rest were 
performed (~10 min). The entire volume of the well was then passed twice through 
a 26-gauge needle into the same well. Following observation of complete tissue 
dissociation, ~5–6 ml of tissue solution was transferred into a precooled 50-ml 
Falcon tube. The Falcon tube was filled with wash buffer to make the total volume 
30 ml. The 30 ml of tissue solution was then split across two different 50-ml 
Falcon tubes (~15 ml of solution in each Falcon tube). The tubes were then spun 
in a precooled swinging bucket centrifuge for 10 min, at 500g and 4 °C. Following 
the spin, the majority of supernatant was discarded (~500 μl remaining with the 
pellet). Tissue solutions from two Falcon tubes were then pooled into a single 
tube of ~1,000 μl of concentrated nuclear tissue solution. Approximately 500 μl of 
wash buffer was then added to bring the total volume of nuclei solution to 1 ml, 
in an Eppendorf tube. DAPI was then added to the solution at the manufacturer’s 
(ThermoFisher Scientific, cat. no. 62248) recommended concentration (1:1,000).

Flow sorting of isolated nuclei was performed similarly to the protocols.io 
protocol (above). Briefly, a 0.2-ml PCR tube was coated with 5% BSA–dissection 
buffer solution. Solution was then removed and 20 μl of FACS capture buffer was 
added as a cushion for nuclei during sorting. Nuclei were sorted into a chilled 
96-well FACS plate (Sony M800 FACSorter). Sorting was done at a pressure of 6–7, 
with forward scatter gain of 1% on the DAPI gate. The ‘purity’ mode was used, and 
no spinning was performed after flow sorting nuclei into PCR tubes. Following 
sorting, nuclei concentration was counted using a hemocytometer before loading 
into the 10X Genomics 3ʹ v.3 Chip.

Human PBMC processing and mock ‘digestion’. Blood was collected in two 
lithium heparin Vacutainer tubes and the transcription inhibitor cocktail was 
immediately added to one tube. One-third of the volume in each tube was then 
incubated with Collagenase IV (2.5 mg ml−1) and DNase I (0.2 mg ml−1) at 37 °C 
for 30 min, while the remaining blood was held at 4 °C. PBMCs were then isolated 
using Lymphoprep gradient centrifugation followed by red blood cell lysis with 
Ammonium-Chloride-Potassium lysis buffer (ACK). Next, PBMCs were stained 
with a viability dye (LIVE/DEAD Fixable Red Dead Cell Stain Kit, ThermoFisher, 
cat. no. L23102) and total live cells (gated on FSC and SSC, followed by doublet 
exclusion and exclusion of LIVE/DEAD-positive cells) were sorted on a BD 
FACSAria. Sorted PBMCs were pooled to generate two samples, one derived from 
the blood treated with inhibitors, one from the control blood, each containing 30% 
of cells derived from the blood processed at 37 °C and 70% of cells derived from the 
blood left at 4 °C.

Mouse single-cell partitioning and library generation. All mouse scRNA-seq 
experiments, except for the explicit 10X Genomics v.3.0 versus v.3.1 comparison 
(Supplementary Fig. 5), were performed used 10X Genomics 3ʹ Single-Cell v.2 kits. 
For the experiments sequencing all CNS cell types, the volume of cell suspension 
containing 10,000 cells was calculated from manual hemocytometer cell counts 
and added to an appropriate volume of nuclease-free H2O according to the 10X 
Genomics 3ʹ Single-Cell v.2 user guide. For experiments with sorted myeloid cells, 
the entire volume of sorted cells (~17–20 μl) was removed from the well and added 
to the appropriate volume of nuclease-free H2O.

Cell suspensions were loaded onto Chromium Single-Cell Chip A (v.2), Chip 
B (v.3) or Chip G (v.3.1) with other reagents according to the manufacturer’s 
protocol. Experiments using v.2 and v.3 chips were run using an original 
Chromium controller and for v.3.1 were run using a NextGEM Chromium 
controller. Following droplet generation, barcoded single-cell libraries were 
generated following the manufacturer’s specifications. Library quality control 
was performed using the Agilent 2100 Bioanalyzer system using the Agilent High 
Sensitivity DNA quantification kit (cat. no. 5067-4626).

Human single-nucleus partitioning and library generation. All single-nucleus 
experiments were performed using 10X Genomics 3ʹ Single-Cell v.3. Following 
droplet generation, barcoded libraries were generated following the manufacturer’s 
specifications with one experiment-specific step. For postmortem human samples 
the cDNA amplification PCR was run for 18 cycles for all samples, acutely isolated 
human samples were run according to manufacturer’s specifications. Additionally, 
to ensure sufficient numbers of microglia for downstream analysis, we generated 
two libraries from each of the postmortem samples.

Human PBMC partitioning and library generation. Human PBMC single-cell 
gene expression libraries were prepared and sequenced at the Yale Center for 
Genome Analysis following standard protocols from 10X Genomics (https://
medicine.yale.edu/keck/ycga/sequencing/10x/singcellsequencing/). Single cells 
were captured using 10X Genomics 5ʹ v.1 kit, targeting 10,000 cells. Following 
droplet generation, barcoded single-cell libraries were generated following the 
manufacturer’s specifications.

Next generation sequencing. All mouse single-cell libraries were sequenced using 
Illumina NextSeq500, following dilution, pooling and denature/dilution according 
to the Illumina denature and dilution guidelines for NextSeq500 High Output flow 
cells. All 16 mouse libraries (each representing an individual animal for both all 
CNS cells and sorted myeloid cells) were sequenced as follows, according to 10X 
Genomics instructions. For 3ʹ Single-Cell v.2 kits: Read 1: 26 base pairs (bp) (16-bp 
cell barcode, 10-bp unique molecular identifier (UMI)); Index 1: 8 bp (Illumina i7 
sample index); Read 2: 98 bp (transcript insert).

The libraries from the tail-vein PBS-injected dataset were submitted to Harvard 
Medical School’s BioPolymers sequencing core for quantification, pooling and 
sequencing. Samples were quality controlled via Agilent Tapestation and quantitative 
PCR by the Biopolymers Core before running on an Illumina NextSeq500/550 
High Output v.2.5 150-cycle flow cell as follows, according to the 10X Genomics 
instructions for 3ʹ Single-Cell v.2 kits: Read 1: 26 bp (16-bp cell barcode, 10-bp UMI); 
Index 1: 8 bp (Illumina i7 sample index); Read 2: 98 bp (transcript insert).

For the 10X v.3.0 versus v.3.1 comparison experiment, the library pool 
containing all six samples was loaded onto an Illumina NextSeq500/550 High 
Output v.2.5 150-cycle flow cell and sequenced as follows, according to the 10X 
Genomics instructions for 3ʹ Single-Cell v.3.0/v.3.1 kits: Read 1: 28 bp (16-bp 
cell barcode, 12-bp UMI); Index 1: 8 bp (Illumina sample index); Read 2: 91 bp 
(transcript insert).

Human single-nucleus libraries underwent two different sequencing 
procedures. First, libraries were pooled to equimolar DNA concentrations 
and sequenced at low depth (~5,000–10,000 reads per nucleus). For this run, 
snRNA-seq libraries from both acute and postmortem samples were pooled, 
diluted and denatured according to Illumina specifications and loaded on an 
Illumina NextSeq500/550 High Output v.2.5 150-cycle flow cell and sequenced 
as follows, according to the 10X Genomics specifications for 3ʹ Single-Cell v.3 
kits: Read 1: 28 bp (16-bp cell barcode, 12-bp UMI); Index 1: 8 bp (Illumina i7 
sample index); Read 2: 91 bp (transcript insert). The approximate number of nuclei 
recovered per sample was determined via the output of the Cell Ranger ‘count’ 
pipeline (below). A new library pool was then created from the original libraries, 
accounting for differences in nuclei number per sample to achieve equal read 
depth per nucleus across samples. The new library pool was then sequenced on 
a NovaSeq 6000 using an S2 100-cycle flow cell and using slightly modified read 
parameters (Read 1: 28 bp; Read 2: 89 bp; i7: 8 bp). All NovaSeq 6000 sequencing 
was performed by the Broad Institute’s Genomics Platform. Only the results of 
sequencing via NovaSeq 6000 were used for analysis.

Human PBMC libraries were sequenced on a NovaSeq 6000 using an S4 
200-cycle flow cell and using the 10X recommended read parameters for 5ʹ v.1 gene 
expression: Read 1: 26 bp; Read 2: 91 bp; i7: 8 bp. Human PBMC library sequencing 
was performed by the Yale Center for Genome Analysis.

Single-cell/nucleus data preprocessing. All preprocessing of sequencing 
data (except for the human PBMC experiment) was performed on Harvard 
Medical School’s O2 High Performance Compute Cluster. Human PBMC data 
were processed on the Yale University Center for Research Computing High 
Performance Compute Cluster.

Mouse data preprocessing. Raw Illumina bcl files for the all CNS cells and sorted 
myeloid cells datasets were demultiplexed using Cell Ranger v.3.0.0 and bcl2fastq 
v.2.20.0.422 using the ‘mkfastq’ step with default specifications. Individual sample 
gene expression matrices were generated using the Cell Ranger v.3.0.0 ‘count’ step 
using the default mm10 genome supplied by 10X Genomics Cell Ranger 3.0.0 
(reference annotation corresponds to the filtered version of Ensembl v.93; see 
the 10X support website for further information (https://support.10xgenomics.
com/single-cell-gene-expression/software/release-notes/build)). Sample-specific 
results were then aggregated into a combined output matrix using the Cell Ranger 
v.3.0.0 ‘aggr’ function, specified with ‘normalize = none’ so that all reads for all 
samples were included in downstream analysis. Cell Ranger ‘aggr’ was performed 
individually for all CNS cell samples (n = 4) and FACS-sorted microglia samples 
(n = 12).
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The PBS tail-vein-injected dataset was processed using Cell Ranger v.2.2.0 
and bcl2fastq v.2.20.0.422 using the ‘mkfastq’ step with default specifications. 
Individual sample gene expression matrices were generated using the Cell Ranger 
v.2.2.0 ‘count’ step using the default mm10 genome supplied by 10X Genomics 
Cell Ranger v.2.2.0 (reference annotation corresponds to the filtered version 
of Ensembl v.84; see the 10X support website for further information (https://
support.10xgenomics.com/single-cell-gene-expression/software/release-notes/
build)). Sample-specific results were then aggregated into a combined 
output matrix using the Cell Ranger v.2.2.0 ‘aggr’ function, specified with 
‘normalize = none’ so that all reads for all samples were included in downstream 
analysis.

For the 10X version comparison, the dataset was processed using Cell 
Ranger v.5.0.0 and bcl2fastq v.2.20.0.422 using the ‘mkfastq’ step with default 
specifications. Individual sample gene expression matrices were generated using 
the Cell Ranger v.5.0.0 ‘count’ step using the default mm10 genome supplied by 
10X Genomics Cell Ranger v.5.0.0 (reference annotation corresponds to the filtered 
version of Ensembl v.98; see the 10X support website for further information 
(https://support.10xgenomics.com/single-cell-gene-expression/software/
release-notes/build)).

Human data preprocessing. For snRNA-seq of brain samples, raw Illumina bcl 
files were demultiplexed using Cell Ranger v.3.1.0 and bcl2fastq v.2.20.0.422 
using the ‘mkfastq’ step with default specifications. A custom premRNA reference 
genome was generated using instructions from 10X Genomics. The default 10X 
GRCh38 genome (reference annotation corresponds to the filtered version of 
Ensembl v.93) was used for modification. Individual sample gene expression 
matrices were generated using the Cell Ranger v.3.1.0 ‘count’ step using this custom 
GRCh38 genome. Sample-specific results were then aggregated into a combined 
output matrix using the Cell Ranger v.3.1.0 ‘aggr’ function, specified with 
‘normalize = none’ so that all reads for all samples were included in downstream 
analysis. Cell Ranger ‘aggr’ was performed once for all human samples (n = 10).

The human PBMC dataset was processed using Cell Ranger v.3.1.0 and 
bcl2fastq v.2.20 using the ‘mkfastq’ step with default specifications. Individual 
sample gene expression matrices were generated using the Cell Ranger v.3.1.0 
‘count’ step using the default GRCh38-3.0.0 genome supplied by 10X Genomics 
Cell Ranger v.3.1.0 (corresponds to filtered version of Ensembl v.98; see the 10X 
support website for further information (https://support.10xgenomics.com/
single-cell-gene-expression/software/release-notes/build)).

Single-cell analysis tools. Single-cell analysis was performed using R (v.3.4.3, 
v.3.5.1 and v.3.6.1) (https://www.r-project.org), and primarily using the single-cell 
analysis package Seurat (primarily v.2.3.4, v.3.1.5 and v.3.2.3)84,85. Additional 
analysis of human single-nucleus samples was performed using the LIGER 
development branch ‘online’47,48. Additional scRNA-seq analysis and plotting 
were performed using scCustomize v.0.5.0 (https://samuel-marsh.github.io/
scCustomize/; ref. 86). Other supplemental R packages were used as described in the 
methods below.

Code required to reproduce Seurat or LIGER objects used for analyses and 
plotting can be found at: https://github.com/samuel-marsh/Marsh_et-al_2022_
scRNAseq_Dissociation_Artifacts. Questions or correspondence regarding 
analysis/code can be directed to samuel.marsh@childrens.harvard.edu.

Mouse scRNA-seq analyses. Similar basic analysis pipelines were used in many 
of the analyses. Full details to replicate the analysis pipelines described briefly 
below can be found in code scripts available on GitHub (https://github.com/
samuel-marsh/Marsh_et-al_2022_scRNAseq_Dissociation_Artifacts).

Initial quality control and clustering (mouse datasets). In brief, cells were filtered 
using dataset-specific parameters on the basis of genes per cell, UMIs per cell and 
percentage of mitochondrial gene reads per cell. Data were log-normalized and 
highly variable genes were selected using mean expression and dispersion cutoffs. 
Data were scaled and UMIs per cell and mitochondrial gene percentage per cell 
were regressed out. Following prinicpal component analysis (PCA), relevant 
principal component (PC) cutoffs were selected for downstream analyses based 
on a combination of JackStraw analysis, ElbowPlot of PC variance and manual 
examination of PCs. Clustering was then performed, first by creation of a shared 
nearest neighbor (SNN) graph using PCs previously selected, followed by Louvain 
clustering with a dataset-specific resolution parameter. The resolution parameter 
of Louvain clustering was iteratively performed to settle on an appropriate final 
resolution. Dimensionality reduction was then performed using t-SNE. Datasets 
were additionally quality controlled at this step by checking for and removing 
doublets on the basis of dual cell-type marker gene expression. Following removal 
of doublets, the analysis pipeline was re-run using the filtered dataset and slightly 
altered parameters.

Cluster annotation (mouse). Cluster annotation was performed through manual 
analysis of the output of differentially expressed marker genes from the output of 
the Wilcoxon rank sum test run via Seurat. Results were filtered in two different 
but complementary ways to identify marker genes, sorting for top genes by log 

fold-change or by calculating a difference metric for percentage of cells expressing 
versus not expressing in a given cluster and then sorting on top differences. For 
the all CNS cells dataset, marker genes were then used for annotation of cell type/
subtype using previous single-cell studies15,33,37,87,88. For the myeloid/microglia 
dataset, clusters were annotated with names reflecting the genes enriched in that 
particular cluster (for example, interferon-responsive, chemokine and so on) or on 
the basis of known biology (for example, proliferative).

Differential abundance analysis (mouse). To determine if the proportions of cells 
per cluster were significantly different between the different protocols, the clusters 
were compared using the R package speckle (https://github.com/Oshlack/speckle). 
The Seurat objects for the all CNS analysis and sorted microglia were used as 
inputs for the analysis. The design matrix for the all CNS analysis simply included 
the two experimental groups as comparison (inhibitor versus no inhibitor). For the 
sorted microglia analysis, in addition to the four experimental groups, the design 
matrix also included batch as a variable. One of the results of this analysis does 
require significantly more cells to confirm as, while the proliferative cluster was 
statistically significant between the DNC-NONE and enzymatic digestion with 
inhibitors (ENZ-INHIB) groups (#FDR ≤ 0.02) (Fig. 1e and Supplementary  
Table 3), this increase should be interpreted with caution, given that this 
population makes up only 0.1% of total cells (27 of 19,563) across all 12 samples.

Subclustering (mouse). Subclustering analysis of the all CNS cell types mouse 
dataset was performed by first calculating the number of cells per replicate for each 
of the clusters. Clusters were then combined into major cell classes by combining 
related/highly similar cell types. To enhance confidence in subclustering analysis, 
only cell classes with greater than 80 cells per replicate (>300 cells total) were 
considered for subclustering. This criterion led to six cell classes for subclustering: 
(1) myeloid (microglia, exAM microglia, monocytes/macrophages); (2) astrocytes 
(astrocyte 1, astrocyte 2, Bergmann glia); (3) endothelial/pericytes (endothelial 
cells, pericytes); (4) oligodendrocytes (oligodendrocytes and oligodendrocyte 
precursor cells); (5) epithelial (epithelial cells/choroid plexus); (6) neurons 
(neurons and neural progenitor cells). Each of the classes was subsetted from the 
original dataset and reanalyzed using a similar pipeline to the original analysis as 
described above.

Metacell DE analysis (mouse). To perform sample-level DE analyses, we utilized 
the Metacell analysis as previously described15. Each ‘meta-cell’ is a pseudobulk 
replicate created by aggregating expression from all cells within a biological 
replicate, and pseudobulk profiles can then be analyzed via traditional bulk 
RNA-seq analysis pipelines. A recent comparative analysis found that pseudobulk 
analysis methods are among the best-performing methods for differential state 
analysis and for making sample-level comparisons from single-cell data, and help 
to overcome some of the inherent sparsity in scRNA-seq data19,89. This pseudobulk 
approach also overcomes the inherent limitations of DE analysis comparisons 
between clusters, which suffer from using the same data to both select and test the 
null hypothesis24,25. For our pipeline, sample normalization and DE analysis were 
performed using DESeq2 (ref. 21) using a simple pipeline. Genes were defined as 
differentially expressed with adjusted P value <0.05 and log2 fold-change less than 
−0.58 or greater than 0.58 (corresponding to 1.5-fold-change).

Cluster comparison analysis. To perform analysis of DEGs across clusters of 
microglia we used MAST90. The MAST framework uses a two-part generalized 
linear model to test for DE while controlling for specified covariates. In our 
analysis of mouse microglial isolation protocols (Fig. 1), we specified log(number 
of UMIs), percentage of reads mapping to mitochondrial genes per cell, batch and 
Method_x_Inhibitor (four-group variable containing method plus inhibitor status; 
for example, ENZ-NONE) as fixed effects (Supplementary Tables 13–17). In our 
analysis of the two microglial clusters in our all CNS cell types analysis (Fig. 2), 
we used log(number of UMIs), percentage of reads mapping to mitochondrial 
genes per cell and presence of inhibitors as fixed effects (Supplementary Table 20). 
Due to the issues mentioned above with statistical analysis performed between 
clusters using the same data used to generate clustering24,25, we did not employ any 
statistical cutoff or use these lists in any downstream module scoring or analysis. 
In the output tables the coefficient is the discrete component of MAST and the P 
value is from the combined hurdle model.

Gene module scores (mouse). Creation of microglial identity scores and gene 
module scores was executed in Seurat based on a previously published technique29. 
Microglial identity score was based on well-established canonical microglial 
markers (Supplementary Table 3). ‘Activation’ score was based on results of the 
Metacell pseudobulk DE analysis performed using DESeq2 (Supplementary Tables 
4–8). For the microglia/myeloid dataset, the consensus DE signature was identified 
by taking the intersection of the three pair-wise comparisons: DNC-NONE versus 
ENZ-NONE, DNC-INHIB versus ENZ-NONE, ENZ-INHIB versus ENZ-NONE.

Reanalysis of publicly available datasets (mouse myeloid/microglia). Raw count 
matrices or loom files containing count matrices were obtained from the National 
Center for Biotechnology Information (NCBI) GEO database, laboratory websites 
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or directly from authors, as specified in Supplementary Fig. 9g, Supplementary 
Tables 1 and 2, and the GitHub ReadME information table (see the link above 
to GitHub code repository). For the datasets in Supplementary Fig. 9 that were 
composed of different genotypes or treatments, only cells from WT or control mice 
were included in downstream analysis.

Datasets were processed with a similar basic Seurat pipeline with minor 
dataset-specific changes (for full details and a breakdown of the analyses 
performed, see code in the GitHub Repository). Briefly, each dataset was filtered 
on dataset-specific parameters for genes per cell, UMIs per cell and percentage 
of mitochondrial genes. Data were log-normalized and variable features were 
selected using ‘mean.var.plot’ or ‘vst’ methods using dataset-specific thresholds 
and then scaled and centered. Examination of PC loadings and results of JackStraw 
analysis were used to determine significant PCs for downstream clustering and 
visualization. Clustering was performed using the Louvain algorithm using 
dataset-specific resolution parameters. Clustering results were visualized using 
t-SNE or Uniform Manifold Approximation and Projection (UMAP). Activation 
and microglial scores were added as described above using the microglial Metacell 
consensus DEG list.

For datasets containing more than just microglia/myeloid cells, the analysis 
pipeline was first run to identify myeloid cells. Clusters containing myeloid cells 
were isolated and the entire pipeline run again to analyze myeloid cells using new 
parameters. All datasets were then further subclustered to manually examine and 
remove any remaining doublets.

For datasets in Supplementary Figs. 8 and 10, multiple genotypes, tissues and 
samples were used as specified in the Results section/code. For analysis of the 
results found by Keren-Shaul et al.41, Crinier et al.42 and Pasciuto et al.46, exAM 
module score enrichment statistical testing was performed using Wilcoxon rank 
sum test, in base R, comparing between groups specified in the Results section/
figures.

Human snRNA-seq/scRNA-seq analysis. Similar basic analysis pipelines were 
used in many of the analyses. Full details to replicate the analysis pipelines 
described below can be found in code scripts available on GitHub (https://github.
com/samuel-marsh/Marsh_et-al_2022_scRNAseq_Dissociation_Artifacts).

Initial quality control filtering (human datasets). In brief, data were  
imported using Seurat v.3 and nuclei datasets were filtered using  
dataset-specific parameters on the basis of genes per nucleus, UMIs  
per nucleus and percentage of mitochondrial gene reads per nucleus. Datasets were 
then converted to LIGER objects, with each sample serving as a separate  
‘dataset’ in LIGER.

Doublet/low-quality nuclei filtering (human datasets). To detect and filter 
doublets and/or low-quality cells in snRNA-seq datasets, we performed iterative 
rounds of clustering using LIGER. Most analyses utilized the new online iNMF 
algorithm48, although some utilized traditional iNMF, when low cell numbers 
per sample were present. Following iNMF and quantile normalization, cells 
were clustered using Louvain clustering, followed by UMAP dimensionality 
reduction. Clusters were then annotated with one of the following broad cell class 
labels: excitatory neuron, inhibitory neuron, oligodendrocyte, oligodendrocyte 
progenitor cell, astrocyte, microglia, endothelial, fibroblast, pericyte, immune/
PBMC (peripheral immune cells) or doublets. Annotation of broad cell classes 
and subtypes was performed using ref. 91 and with canonical marker genes as a 
reference. Each broad cell class was then subsetted and reanalyzed and clustered 
again. Doublet identification was then performed using a combination of marker 
gene expression and shared LIGER ‘factors’ to identify nuclei that expressed 
markers or combinations of markers that are exclusive to two different cell classes. 
These subclusters were then classified as doublets and all barcodes corresponding 
to nuclei is those clusters were removed from the analysis. Some datasets required 
additional rounds of analysis and subclustering to completely remove likely doublet 
nuclei that were not found during the first round.

Clustering and LIGER factor analysis. Following doublet removal, the ‘cleaned’ 
subclusters for each major cell class were merged and full analysis and clustering 
was performed using LIGER. After cleaning, LIGER factors for each major cell 
class were examined by plotting the factor on UMAP plots and examining the top 
genes that loaded on each factor. Factors with genes indicative of activation, stress 
response or similarity to mouse signature were selected for further analysis. For 
each selected factor we plotted the normalized cell-specific factor loadings for each 
gene and selected cutoff thresholds (Fig. 4a,b, dashed lines). The list of genes above 
the cutoff in each factor (Supplementary Table 22) was compared with the union 
of the two mouse DEG activation lists (Supplementary Table 4) to analyze overlap 
and similarities.

Gene module score thresholding (human postmortem). To quantify the 
enrichment of the microglia and astrocyte postmortem LIGER factors across 
all samples in each dataset, we performed gene module scoring using Seurat, as 
described above. To determine whether a particular cell’s score was defined as 
‘enriched’, we first determined dataset-specific thresholds.

To determine thresholds for enrichment we first created an intersect gene list 
of all genes present across all five datasets. We then created 1,000 random gene lists 
of equivalent length to the microglial LIGER factor (38 genes) and the astrocyte 
LIGER factor (27 genes). We then downsampled each dataset so that all of the 
major cell classes had the same number of cells, so that cell number/proportion 
did not influence outlier detection. We then performed gene module scoring using 
the random lists. To determine a cutoff for microglia we calculated an outlier 
threshold for each of the random scores. The outlier threshold was calculated as 
median score (across all cell types) + 3 × median absolute deviation of score (across 
all cell types). We then plotted all of the outlier thresholds for each of the 1,000 
random scores. A cutoff was selected at the top 2.5% of outlier thresholds. We then 
determined the proportion of microglia per sample that exhibited a postmortem 
LIGER microglia factor score above that cutoff. This process was repeated for 
astrocytes using the random gene lists of equivalent length to the astrocyte 
postmortem LIGER factor. These enrichment proportions per sample were then 
used for correlational analysis to metadata variables (PMI, age and so on)  
(Fig. 4l–n and Supplementary Fig. 16a–c).

Time delay freezing analysis. Nuclei from acutely resected human tissue were 
analyzed using a similar pipeline to previously described for human tissue analysis. 
Following final clustering, the microglial and astrocyte clusters were subsetted and 
converted to Seurat class for analysis comparing with postmortem LIGER factors. 
Module scoring was performed using the LIGER factor genes (Supplementary 
Table 22) as the input for postmortem microglial and astrocyte scores on the 
microglial and astrocyte subclusters, respectively. DEG analysis was performed 
using Wilcoxon rank sum test with Bonferroni correction, comparing between 
the identity classes of 0 h versus 6 h as implemented in the FindMarkers function 
of the Seurat package. Analysis of microglia and astrocyte LIGER factor module 
score enrichment testing was performed using Wilcoxon rank sum test, comparing 
between 0-h and 6-h cells.

Human PBMC mock ‘digestion’ analysis. Human PBMCs from the mock 
‘digestion’ with and without inhibitors were analyzed using a similar Seurat 
pipeline to those used in the mouse scRNA-seq analyses described above (see full 
code on GitHub). Following initial analysis, clusters were then annotated with one 
broad cell class label using canonical marker genes from Immgen and the Human 
Cell Atlas: Immune System Atlas56,92. Each broad cell class was then subsetted 
and reanalyzed and clustered again. Doublet identification was then performed 
using combinations of marker gene expression to identify nuclei that expressed 
markers or combinations of markers that are exclusive to two different cell classes. 
‘Cleaned’ subclusters were then merged and reanalyzed. Final cluster annotation 
was performed using a combination of manual marker gene analysis (as above) 
and automated reference-based mapping via Seurat/Azimuth93. DEG analysis was 
performed in major cell classes (T cells, B cells and so on) with greater than 100 
total cells in the final analysis. DEG analysis was performed using Wilcoxon rank 
sum test with Bonferroni correction, comparing between the identity classes of 0 h 
versus 6 h as implemented in the FindMarkers function of the Seurat package.

RNAscope smFISH. Mice were anesthetized and perfused intracardially with 
ice-cold HBSS. Brains were immediately dissected and flash-frozen using the 
vapor phase of liquid nitrogen. Following freezing, brains were embedded in OCT 
(Tissue-Tek) and frozen on dry ice before storage at −80 °C before sectioning. 
OCT-embedded samples were mounted on a cryostat and cut into 16-μm sagittal 
sections. Slides were kept frozen at all times during sectioning and then moved to 
−80 °C for storage before RNAscope.

RNAscope Fluorescent Multiplex Assay (ACD Biosystems) was performed 
according to the manufacturer’s protocol for fresh-frozen tissue. Brain sections 
were hybridized with three mRNA probes per experiment. The following genes/
probes were used: Fcrls (microglia/myeloid), Ccl4. The probes were amplified 
according to the manufacturer’s instructions and labeled with the following 
fluorophores for each experiment: Alexa 488 nm, Atto 550 nm, Atto 647 nm. 
High-resolution images were taken using ×60 magnification on a Zeiss LSM 
confocal microscope.

Statistics. Statistical analysis of data was performed mainly using the R 
packages base R, Seurat, DESeq2 or speckle, with some additional analyses 
in Prism 8 (GraphPad Software). No explicit statistical methods were used to 
predetermine sample sizes but our sample sizes exceed those reported in previous 
publications32,34,43.

The experiments used a mixture of blinded and nonblinded analyses, as 
follows. Experimental collection and processing of samples were not performed 
blind due to the conditions of the experiment. scRNA-seq/snRNA-seq were not 
performed blind but using automated and appropriate field standard analysis 
techniques that require metadata to be present. smFISH experiments and imaging 
were performed blind.

The only datapoints that were excluded from this analysis were those cells 
defined as low-quality (see above scRNA-seq/snRNA-seq analyses sections 
and GitHub code repository) or those that were defined as doublets using 
manual annotation of doublet cells by the experimenter (see above scRNA-seq/
snRNA-seq analyses sections and GitHub code repository). All filtering was 
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performed using field standard techniques as described in the analysis subsections 
above. All of these datapoints are present in raw data deposited in NCBI 
GEO, the Database of Genotypes and Phenotypes (dbGaP) and the European 
Phenome-Genome Archive (EGA). Code to recreate all filtering performed 
can be found at the GitHub repository: https://github.com/samuel-marsh/
Marsh_et-al_2022_scRNAseq_Dissociation_Artifacts

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw sequencing data for all mouse samples were deposited in the NCBI GEO 
database under the SuperSeries GSE152184 which contains the following subseries: 
GSE152183 (Mouse microglia four dissociation protocols), GSE152182 (Mouse 
all CNS cells), GSE152210 (Mouse microglia PBS tail vein), GSE188441 (Mouse 
microglia 10X version comparison). Cell Ranger output files are available as 
supplementary files via GEO and raw fastq files can be accessed from SRA linked 
from GEO records. Raw sequencing data for postmortem human tissue were 
deposited in the NCBI GEO database under the SuperSeries GSE152184, in the 
subseries GSE157760. Cell Ranger output files are available as supplementary files 
via GEO and raw fastq files can be accessed from SRA linked from GEO records. 
Raw sequencing data for the acutely isolated human tissue were deposited in the 
European Phenome-Genome Archive (EGA) (accession ID: EGAD00001008541). 
Raw sequencing data for the mock ‘digestion’ of human PBMCs were deposited in the 
Database of Genotypes and Phenotypes (dbGaP) (accession ID: phs002222.v2.p1).

Code availability
All analysis code required to replicate Seurat or LIGER objects 
used in analysis can be found at: https://github.com/samuel-marsh/
Marsh_et-al_2022_scRNAseq_Dissociation_Artifacts
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Description is stated in methods and here: 

Raw sequencing data was processed as stated in methods and NCBI GEO/EGA/dbGAP records.  10X Genomics Cell Ranger software (v2.2, 3.0, 

3.1, or 5.0 as specified in SI Tables 1-2) and bcl2fastq (v2.20.0.422) 

Mouse single cell analysis was performed using R (v3.4.3, v3.5.1, and 3.6.1) and primarily using the single cell analysis package Seurat (v2.3.4,  

v3.1.5, and 3.2.3). Additional analysis of human single nuclei samples was performed using LIGER development branch “online”. Other 

supplemental R packages were used as described in methods below.  To determine if the proportions of cells per cluster were significantly 

different between the different protocols the clusters were compared using the R package speckle v0.0.1 (https://github.com/Oshlack/

speckle).  Additional single cell analysis and plotting was performed using scCustomize v0.5.0. 

FACS sorting was performed using FACSDiva v8.0.1.   

GraphPad Prism v8.4.3 was used for other statistics and plotting as described in methods.

Data analysis Link to code used to generate single cell objects used in analysis can be found in methods section of manuscript and here: https://github.com/

samuel-marsh/Marsh_et-al_2022_scRNAseq_Dissociation_Artifacts

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

Data & Software Availability: Raw sequencing data for all mouse samples was deposited in the NCBI GEO database under the SuperSeries GSE152184 which contains 

the following subseries: GSE152183 (Mouse Microglia 4 dissociation protocols), GSE152182 (Mouse All CNS Cells), GSE152210 (Mouse Microglia PBS Tail Vein), 

GSE188441 (Mouse 10X Version Comparison). Cell Ranger output files are available as supplementary files via GEO and raw fastq files can be accessed from SRA 

linked from GEO records. Raw sequencing data for post-mortem human tissue was deposited in NCBI GEO database under the super series GSE152184 in the 

subseries: GSE157760. Cell Ranger output files are available as supplementary files via GEO and raw fastq files can be accessed from SRA linked from GEO records. 

Raw sequencing data for the acutely isolated human tissue was deposited in European phenome-Genome Archive (EGA) (Accession ID: in progress,)..  Raw 

sequencing data and processed count matrix files for human PBMC dataset are deposited in dbGAP (Accession #: phs002222.v2.p1).

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen to allow for the comparisons between multiple replicates in all of the groups, with the exception of pilot study in 

human PBMCs.  Sample sizes and pilot nature of experiment are clearly stated in mnauscript, Figure Panel A, and Figure Legend.

Data exclusions No data was discarded except for data filtered during dataset quality control (applies to all single-cell/single-nuclei experiments), which was 

performed according to field standard techniques as described in methods and exact code provided in linked GitHub repo.  Deposited data is 

both raw sequencing reads fastq (no exclusions) and Cell Ranger software outputs (no exclusions).

Replication Replication was confirmed using multiple biological replicates in all experiments and through reanalysis of literature datasets which confirm 

the effects observed in currently generated datasets. smFISH experiments were performed twice on independent biological replicates.  

Human post-portem single nuclei data contains data from two libraries per donor processed in different batches/experiments with identical 

protocols before sequencing samples at the same time.

Randomization Only experiment that involved required multiple batches was the mouse microglia experiment (Figure 1, SI Figures 1-3, 6).  Samples in this 

experiment were randomized so that samples from each experimental group was present in both batches and order was staggered.  The 

ordering and batching of samples is provided in SI Table 1.  For human experiments with case/control design (freezing delay and mock 

digestion) all collected samples were split evenly between case-control groups.  There is no experimental group assignment for post-mortem 

experiment.  Case/control status for reanalysis of public datasets was performed using the annotations/meta data provided in those 

publications.

Blinding For mouse experiments: Investigators were not blind to experimental condition during tissue collection due to the conditions of the 

experiment.  FACS sorting of cells and generation of single cell libraries was performed blind.    scRNA-seq analyses were not performed blind 

but using automated and appropriate and field standard analysis techniques that require meta data to be present.   All statistical measures 

(DEG, cell/nuclei abundance, etc) was performed using were performed using automated pipelines (DESeq2, speckle, MAST). 

 

For Human experiments: Acute tissue collection/freezing delay and mock digestion was not performed blind due to the nature of the 

experiment.  Nuclei isolation, FACS sort of nuclei, and library generation was all performed blind. snRNA-seq/scRNA-seq analyses were not 

performed blind but using automated and appropriate and field standard analysis techniques that require meta data to be present. 

Initial scRNA-seq/snRNA-seq experiments were performed relatively blind but proper integration and analysis of diverse datasets requires 

periodic unblinding to assess analysis.  All statistical measures (DEG, cell/nuclei abundance, etc) was performed using were performed using 

automated pipelines (DESeq2, speckle, MAST).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used Anti-CD16/CD32 to block Fc receptors (1:50; BioLegend Cat #: 553141). 

The following antibodies were then added to cell suspensions at 1:200 final concentration: 

CD11b-BV421 (BioLegend Cat#: 101236 Clone: M1/70) 

CD45-PE (BioLegend Cat#: 103106 Clone: 30-F11) 

CX3CR1-Alexa Fluor 647 (BioLegend Cat#: 149004: Clone: SA011F11s). 

Validation Validation as reported by supplier (BioLegend): 

Anti-CD16/CD32 (1:50; BioLegend Cat #: 553141). to block Fc receptors is quality control tested for flow cytometry and well-

validated/reported in literature to block CD16 & CD32 (Fc Receptors) (See BioLgend Citation library on product page). 

CD11b-BV421 (BioLegend Cat#: 101236 Clone: M1/70) is quality control tested for flow cytometry. 

CD45-PE (BioLegend Cat#: 103106 Clone: 30-F11) is quality control tested for flow cytometry and shown to bind to both CD45.1 and 

CD45.2 isoforms. 

CX3CR1-Alexa Fluor 647 (BioLegend Cat#: 149004: Clone: SA011F11s) ) is quality control tested for flow cytometry.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals As stated in methods section of the paper and copied here: 

All mouse studies used C57BL/6J (Stock # 000664) purchased from Jackson Laboratories. Mouse single cell sequencing studies were 

performed with male mice at P89-90.  smFISH studies were performed with mice ranging from P90-P120. Both male and female mice 

were used for smFISH studies.  All animals were group housed on a 12-h/12-h light/dark cycle with access to food and water ad 

libitum.  All experiments were reviewed and overseen by the institutional animal use and care committee at Boston Children’s 

Hospital in accordance with all NIH guidelines for the humane treatment of animals. For full breakdown of replicates per dataset for 

mouse experiments see SI Table 1.

Wild animals Study did not involve the use of wild animals.

Field-collected samples Study did not involved field collected animals.

Ethics oversight All experiments were reviewed and overseen by the institutional animal use and care committee at Boston Children’s Hospital in 

accordance with all NIH guidelines for the humane treatment of animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics All demographic information was provided in SI Table 2. 

Recruitment Only recruitment was for acute human tissue.  Acutely isolated human brain tissue was obtained with informed consent 

under protocol REC 16/LO/2168 approved by the NHS Health Research Authority.

Ethics oversight As also stated in methods section and repeated here: 

Post-Mortem Human Brain: 

Post-mortem autopsy tissue from control cases was obtained from the Massachusetts Alzheimer’s Disease Research Center 

(MADRC) at Massachusetts General Hospital (MGH). Tissue were collected with informed consent of patients or their 

relatives and approval of Massachusetts General Hospital Institutional Review Board. Human patient demographic 

information for tissue in the current study is provided in Table S2. Post-mortem tissue processing and sequencing 

experiments were performed at the Broad Institute and approved by Broad Institute’s Office of Research Subject Protection. 

Recruitment was performed by MGH brain bank/MADRC and these were samples supplied as neuropathological control 

samples.  

Acute Human Tissue: 

Acutely isolated human brain tissue was obtained with informed consent under protocol REC 16/LO/2168 approved by the 

NHS Health Research Authority. Samples were transferred subject to MTA agreements between institutions and use and 
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processing of acute brain tissue and sequencing were reviewed and approved by Boston Children’s Hospital Institutional 

Review Board and Broad Institute’s Office of Human Research Subjects Protection.  Samples came from GBM patients and 

biased by those recruitment characteristics. 

Human PBMCs: 

Human PBMCs were obtained from blood drawn from a healthy volunteer (male, 35 y.o.) in lithium heparin coated tubes.  

Blood was collected in accordance with a protocol approved by Yale University Institutional Review Board with the informed 

consent of the patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation As stated in methods (copied and pasted directly below): 

All steps were performed on ice or using pre-chilled refrigerated centrifuge set to 4C̊ with all buffers/solutions prechilled 

before addition to samples.  Cell suspensions (50μl) were incubated for 20 minutes on ice with anti-CD16/CD32 to block Fc 

receptors (1:50; BioLegend Cat #: 553141) and with a viability dye; eFlour780 (1:1000; Thermo Fisher Scientific Cat# 

50-169-66) to identify live cells.  Antibody master mix was created by adding all antibodies at 2X their final concentration, 

10μl of Brilliant Stain Buffer Plus (BD Biosciences Cat#: 566385), to FACS buffer.  The master mix was composed of the 

following antibodies: CD11b-BV421 (BioLegend Cat#: 101236; Clone: M1/70; 1:100 master mix; final staining concentration 

1:50), CD45-PE (BioLegend Cat#: 103106; Clone: 30-F11; 1:200 master mix; final staining concentration 1:100), CX3CR1-Alexa 

Fluor 647 (BioLegend Cat#: 149004; Clone: SA011F11; 1:500 master mix; final staining concentration 1:250).  Following Fc 

block, 50μl of antibody master mix was added to each sample to achieve 1X antibody concentration.   Samples were 

incubated with staining antibodies for 20 min at 4C̊ and then spun down for 5 min at 300g, before being resuspended in 

500μl of FACS buffer.

Instrument BD FACSAria-SORP (Special Order system).

Software BD FACS Diva and FlowJo (v10)

Cell population abundance See SI Figure 1.

Gating strategy Gating strategy for myeloid cell sort was as follows (SI Figure1b: Live (live/dead eFluor780), cells vs. debris (FSC-A vs. SSC-A), 

singlets (FSC-H vs. FSC-A), CD45+/CD11b+. We intentionally set a liberal gate of any CD11b+/CD45+ cells so as to not bias our 

scRNA-seq due to changes in cell surface receptor expression (SI Figure 1b-c). CX3CR1 was excluded as parameter used for 

cell sort due to differences in staining between isolation methods as result of cleavage of extracellular epitopes by enzymes 

(SI Figure 1d-e).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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